Stavarache Ionel, Maraloiu Valentin Adrian, Prepelita Petronela, Iordache Gheorghe
National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Ilfov, Romania.
National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania.
Beilstein J Nanotechnol. 2016 Oct 21;7:1492-1500. doi: 10.3762/bjnano.7.142. eCollection 2016.
Obtaining high-quality materials, based on nanocrystals, at low temperatures is one of the current challenges for opening new paths in improving and developing functional devices in nanoscale electronics and optoelectronics. Here we report a detailed investigation of the optimization of parameters for the in situ synthesis of thin films with high Ge content (50 %) into SiO. Crystalline Ge nanoparticles were directly formed during co-deposition of SiO and Ge on substrates at 300, 400 and 500 °C. Using this approach, effects related to Ge-Ge spacing are emphasized through a significant improvement of the spatial distribution of the Ge nanoparticles and by avoiding multi-step fabrication processes or Ge loss. The influence of the preparation conditions on structural, electrical and optical properties of the fabricated nanostructures was studied by X-ray diffraction, transmission electron microscopy, electrical measurements in dark or under illumination and response time investigations. Finally, we demonstrate the feasibility of the procedure by the means of an Al/n-Si/Ge:SiO/ITO photodetector test structure. The structures, investigated at room temperature, show superior performance, high photoresponse gain, high responsivity (about 7 AW), fast response time (0.5 µs at 4 kHz) and great optoelectronic conversion efficiency of 900% in a wide operation bandwidth, from 450 to 1300 nm. The obtained photoresponse gain and the spectral width are attributed mainly to the high Ge content packed into a SiO matrix showing the direct connection between synthesis and optical properties of the tested nanostructures. Our deposition approach put in evidence the great potential of Ge nanoparticles embedded in a SiO matrix for hybrid integration, as they may be employed in structures and devices individually or with other materials, hence the possibility of fabricating various heterojunctions on Si, glass or flexible substrates for future development of Si-based integrated optoelectronics.
在低温下获得基于纳米晶体的高质量材料,是在纳米级电子学和光电子学中开辟改进和开发功能器件新途径的当前挑战之一。在此,我们报告了对在SiO中原位合成高Ge含量(50%)薄膜的参数优化的详细研究。在300、400和500℃下,在衬底上共沉积SiO和Ge的过程中直接形成了结晶Ge纳米颗粒。使用这种方法,通过显著改善Ge纳米颗粒的空间分布并避免多步制造工艺或Ge损失,强调了与Ge-Ge间距相关的效应。通过X射线衍射、透射电子显微镜、暗态或光照下的电学测量以及响应时间研究,研究了制备条件对所制备纳米结构的结构、电学和光学性质的影响。最后,我们通过Al/n-Si/Ge:SiO/ITO光探测器测试结构证明了该工艺的可行性。在室温下研究的这些结构表现出优异的性能、高光响应增益、高响应度(约7 A/W)、快速响应时间(4 kHz时为0.5 μs)以及在450至1300 nm的宽工作带宽内高达900%的优异光电转换效率。所获得的光响应增益和光谱宽度主要归因于填充在SiO基质中的高Ge含量,这表明了所测试纳米结构的合成与光学性质之间的直接联系。我们的沉积方法证明了嵌入SiO基质中的Ge纳米颗粒在混合集成方面的巨大潜力,因为它们可以单独或与其他材料一起用于结构和器件中,因此有可能在Si、玻璃或柔性衬底上制造各种异质结,以用于基于Si的集成光电子学的未来发展。