Suppr超能文献

用于生物催化的工程化苯乙烯单加氧酶:还原酶-环氧化酶融合蛋白

Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

作者信息

Heine Thomas, Tucker Kathryn, Okonkwo Nonye, Assefa Berhanegebriel, Conrad Catleen, Scholtissek Anika, Schlömann Michael, Gassner George, Tischler Dirk

机构信息

TU Bergakademie Freiberg, Freiberg, Germany.

San Francisco State University, San Francisco, CA, USA.

出版信息

Appl Biochem Biotechnol. 2017 Apr;181(4):1590-1610. doi: 10.1007/s12010-016-2304-4. Epub 2016 Nov 9.

Abstract

The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s. This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

摘要

双组分苯乙烯单加氧酶(SMO)对苯乙烯及相关化合物的对映选择性环氧化作用,使这些酶成为生物催化剂开发的目标。在本研究中,我们制备了基因工程融合蛋白,该蛋白通过连接肽将环氧化酶(StyA)的C末端与还原酶(StyB)的N末端连接起来,并证明了它们在合成泰尔紫及其他靛族染料中作为生物催化剂的效用。单载体表达系统为苯乙烯单加氧酶的催化功能转化和扩展提供了一个简化平台,所产生的融合蛋白自我调节,并能有效地将NADH氧化与苯乙烯环氧化偶联。我们发现,在低FAD浓度下,还原酶结构域通过顺序三元复合物机制进行反应,而在较高FAD浓度下则通过双置换机制进行反应。单轮研究表明,FAD到FAD氢化物转移的观测速率常数约为8 s⁻¹。这一步骤在苯乙烯环氧化反应中是限速步骤,有助于确保黄素还原和苯乙烯环氧化反应在没有浪费性副反应的情况下进行。将融合蛋白的还原酶活性与天然存在的还原酶SMOB以及N末端带有组氨酸标签的还原酶NSMOB进行比较,结果表明,观察到的催化机制变化部分归因于与还原酶N末端延伸相关的黄素结合亲和力增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验