Suppr超能文献

ARQiv-HTS,一种多功能的整体生物筛选平台,能够以高通量的速度进行体内药物发现。

ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates.

机构信息

Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA.

出版信息

Nat Protoc. 2016 Dec;11(12):2432-2453. doi: 10.1038/nprot.2016.142. Epub 2016 Nov 10.

Abstract

The zebrafish has emerged as an important model for whole-organism small-molecule screening. However, most zebrafish-based chemical screens have achieved only mid-throughput rates. Here we describe a versatile whole-organism drug discovery platform that can achieve true high-throughput screening (HTS) capacities. This system combines our automated reporter quantification in vivo (ARQiv) system with customized robotics, and is termed 'ARQiv-HTS'. We detail the process of establishing and implementing ARQiv-HTS: (i) assay design and optimization, (ii) calculation of sample size and hit criteria, (iii) large-scale egg production, (iv) automated compound titration, (v) dispensing of embryos into microtiter plates, and (vi) reporter quantification. We also outline what we see as best practice strategies for leveraging the power of ARQiv-HTS for zebrafish-based drug discovery, and address technical challenges of applying zebrafish to large-scale chemical screens. Finally, we provide a detailed protocol for a recently completed inaugural ARQiv-HTS effort, which involved the identification of compounds that elevate insulin reporter activity. Compounds that increased the number of insulin-producing pancreatic beta cells represent potential new therapeutics for diabetic patients. For this effort, individual screening sessions took 1 week to conclude, and sessions were performed iteratively approximately every other day to increase throughput. At the conclusion of the screen, more than a half million drug-treated larvae had been evaluated. Beyond this initial example, however, the ARQiv-HTS platform is adaptable to almost any reporter-based assay designed to evaluate the effects of chemical compounds in living small-animal models. ARQiv-HTS thus enables large-scale whole-organism drug discovery for a variety of model species and from numerous disease-oriented perspectives.

摘要

斑马鱼已成为用于整体生物小分子筛选的重要模型。然而,大多数基于斑马鱼的化学筛选仅达到中通量速率。在这里,我们描述了一种通用的全生物体药物发现平台,可以实现真正的高通量筛选(HTS)能力。该系统将我们的自动化体内报告物定量(ARQiv)系统与定制的机器人技术相结合,称为“ARQiv-HTS”。我们详细介绍了建立和实施 ARQiv-HTS 的过程:(i)测定设计和优化,(ii)样本量和命中标准的计算,(iii)大规模卵生产,(iv)自动化化合物滴定,(v)将胚胎分配到微量滴定板中,以及(vi)报告物定量。我们还概述了利用 ARQiv-HTS 进行基于斑马鱼的药物发现的最佳实践策略,并解决了将斑马鱼应用于大规模化学筛选的技术挑战。最后,我们提供了最近完成的首次 ARQiv-HTS 工作的详细方案,该工作涉及鉴定可提高胰岛素报告物活性的化合物。增加产生胰岛素的胰腺β细胞数量的化合物代表了糖尿病患者的潜在新疗法。对于这项工作,每个筛选会议需要 1 周的时间才能完成,并且每隔一天左右就会进行迭代,以提高通量。在筛选结束时,已经评估了超过 50 万种药物处理过的幼虫。除了这个初始示例之外,ARQiv-HTS 平台还可以适应几乎任何旨在评估化学化合物对活体小动物模型影响的基于报告物的测定。因此,ARQiv-HTS 可以实现各种模型物种和来自多种疾病方向的大规模全生物体药物发现。

相似文献

1
ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates.
Nat Protoc. 2016 Dec;11(12):2432-2453. doi: 10.1038/nprot.2016.142. Epub 2016 Nov 10.
2
Automated reporter quantification in vivo: high-throughput screening method for reporter-based assays in zebrafish.
PLoS One. 2012;7(1):e29916. doi: 10.1371/journal.pone.0029916. Epub 2012 Jan 4.
4
Streamlining drug discovery assays for cardiovascular disease using zebrafish.
Expert Opin Drug Discov. 2020 Jan;15(1):27-37. doi: 10.1080/17460441.2020.1671351. Epub 2019 Oct 1.
6
The zebrafish: a powerful platform for in vivo, HTS drug discovery.
Assay Drug Dev Technol. 2011 Aug;9(4):354-61. doi: 10.1089/adt.2010.0346. Epub 2011 Feb 10.
7
Small molecule screening in the zebrafish.
Methods. 2006 Jul;39(3):255-61. doi: 10.1016/j.ymeth.2005.09.019.
8
A versatile, automated and high-throughput drug screening platform for zebrafish embryos.
Biol Open. 2021 Sep 15;10(9). doi: 10.1242/bio.058513. Epub 2021 Sep 2.
9
Changing the HTS Paradigm: AI-Driven Iterative Screening for Hit Finding.
SLAS Discov. 2021 Feb;26(2):257-262. doi: 10.1177/2472555220949495. Epub 2020 Aug 18.
10
15 years of zebrafish chemical screening.
Curr Opin Chem Biol. 2015 Feb;24:58-70. doi: 10.1016/j.cbpa.2014.10.025. Epub 2014 Nov 15.

引用本文的文献

1
Zebrafish as a Model for Translational Immuno-Oncology.
J Pers Med. 2025 Jul 11;15(7):304. doi: 10.3390/jpm15070304.
3
A whole-animal phenotypic drug screen identifies suppressors of atherogenic lipoproteins.
bioRxiv. 2025 Jan 16:2024.11.14.623618. doi: 10.1101/2024.11.14.623618.
5
Transcriptomic comparison of two selective retinal cell ablation paradigms in zebrafish reveals shared and cell-specific regenerative responses.
PLoS Genet. 2023 Oct 11;19(10):e1010905. doi: 10.1371/journal.pgen.1010905. eCollection 2023 Oct.
6
Flight for fish in drug discovery: a review of zebrafish-based screening of molecules.
Biol Lett. 2023 Aug;19(8):20220541. doi: 10.1098/rsbl.2022.0541. Epub 2023 Aug 2.
7
Development of a Transparent Transgenic Zebrafish Cellular Phenotype ((, ) to Study NF-kB Activity.
Biomedicines. 2023 Jul 13;11(7):1985. doi: 10.3390/biomedicines11071985.

本文引用的文献

1
Zebrafish as tools for drug discovery.
Nat Rev Drug Discov. 2015 Oct;14(10):721-31. doi: 10.1038/nrd4627. Epub 2015 Sep 11.
3
From phenotype to mechanism after zebrafish small molecule screens.
Drug Discov Today Dis Models. 2013 Spring;10(1):e51-e55. doi: 10.1016/j.ddmod.2012.02.002.
4
The fickle P value generates irreproducible results.
Nat Methods. 2015 Mar;12(3):179-85. doi: 10.1038/nmeth.3288.
5
15 years of zebrafish chemical screening.
Curr Opin Chem Biol. 2015 Feb;24:58-70. doi: 10.1016/j.cbpa.2014.10.025. Epub 2014 Nov 15.
6
Effects of proarrhythmic drugs on relaxation time and beating pattern in rat engineered heart tissue.
Basic Res Cardiol. 2014;109(6):436. doi: 10.1007/s00395-014-0436-7. Epub 2014 Sep 11.
7
Robust adaptive phase-shifting demodulation for testing moving wavefronts.
Opt Express. 2013 Dec 2;21(24):29687-94. doi: 10.1364/OE.21.029687.
9
Advances in zebrafish chemical screening technologies.
Future Med Chem. 2012 Sep;4(14):1811-22. doi: 10.4155/fmc.12.115.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验