IEEE Trans Neural Netw Learn Syst. 2018 Jan;29(1):167-182. doi: 10.1109/TNNLS.2016.2615134. Epub 2016 Nov 1.
This paper analyzes data-based online nonlinear extremum-seeker (DONE), an online optimization algorithm that iteratively minimizes an unknown function based on costly and noisy measurements. The algorithm maintains a surrogate of the unknown function in the form of a random Fourier expansion. The surrogate is updated whenever a new measurement is available, and then used to determine the next measurement point. The algorithm is comparable with Bayesian optimization algorithms, but its computational complexity per iteration does not depend on the number of measurements. We derive several theoretical results that provide insight on how the hyperparameters of the algorithm should be chosen. The algorithm is compared with a Bayesian optimization algorithm for an analytic benchmark problem and three applications, namely, optical coherence tomography, optical beam-forming network tuning, and robot arm control. It is found that the DONE algorithm is significantly faster than Bayesian optimization in the discussed problems while achieving a similar or better performance.
本文分析了基于数据的在线非线性极值搜索器(DONE),这是一种在线优化算法,它基于昂贵且嘈杂的测量数据来迭代地最小化未知函数。该算法以随机傅里叶展开的形式来维护未知函数的代理。每当有新的测量数据可用时,代理就会更新,然后用于确定下一个测量点。该算法与贝叶斯优化算法相当,但每次迭代的计算复杂度不依赖于测量数据的数量。我们推导出了几个理论结果,提供了关于算法的超参数应该如何选择的见解。该算法与贝叶斯优化算法进行了比较,以评估其在一个分析基准问题和三个应用中的表现,分别是光学相干断层扫描、光波束形成网络调谐和机械臂控制。结果发现,在讨论的问题中,DONE 算法的速度明显快于贝叶斯优化算法,同时实现了相似或更好的性能。