Suppr超能文献

一类具有不等式约束的连续时间非仿射非线性系统的自适应近乎最优控制

Adaptive nearly optimal control for a class of continuous-time nonaffine nonlinear systems with inequality constraints.

作者信息

Fan Quan-Yong, Yang Guang-Hong

机构信息

College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, P.R. China.

College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, P.R. China; State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, Liaoning 110819, P.R. China.

出版信息

ISA Trans. 2017 Jan;66:122-133. doi: 10.1016/j.isatra.2016.10.019. Epub 2016 Nov 9.

Abstract

The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies.

摘要

在基于自适应动态规划(ADP)方法求解非线性最优控制问题的文献中,几乎没有考虑状态不等式约束。本文提出一种 actor-critic(AC)算法,用于求解一类具有状态约束的非仿射非线性系统的带折扣代价函数的最优控制问题。为克服由受控系统的不等式约束和非仿射非线性所带来的困难,引入一种重新设计松弛函数的新型变换技术和一种预补偿器方法,将约束最优控制问题转化为仿射非线性系统的无约束问题。然后,基于策略迭代(PI)算法,提出一种在线AC方案,用于学习所得到的仿射非线性动力学的近似最优控制策略。利用非线性模型的信息,设计新型自适应更新律,以保证神经网络(NN)权重的收敛性以及仿射非线性动力学的稳定性,而无需探测信号。最后,通过仿真研究验证了所提方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验