Tao Molei
Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Phys Rev E. 2016 Oct;94(4-1):043303. doi: 10.1103/PhysRevE.94.043303. Epub 2016 Oct 10.
Explicit symplectic integrators have been important tools for accurate and efficient approximations of mechanical systems with separable Hamiltonians. This article proposes for arbitrary Hamiltonians similar integrators, which are explicit, of any even order, symplectic in an extended phase space, and with pleasant long time properties. They are based on a mechanical restraint that binds two copies of phase space together. Using backward error analysis, Kolmogorov-Arnold-Moser theory, and additional multiscale analysis, an error bound of O(Tδ^{l}ω) is established for integrable systems, where T,δ,l, and ω are, respectively, the (long) simulation time, step size, integrator order, and some binding constant. For nonintegrable systems with positive Lyapunov exponents, such an error bound is generally impossible, but satisfactory statistical behaviors were observed in a numerical experiment with a nonlinear Schrödinger equation.
显式辛积分器一直是用于精确且高效地近似具有可分离哈密顿量的力学系统的重要工具。本文针对任意哈密顿量提出了类似的积分器,这些积分器是显式的、具有任意偶数阶、在扩展相空间中是辛的,并且具有良好的长时间特性。它们基于一种将相空间的两个副本绑定在一起的力学约束。利用向后误差分析、柯尔莫哥洛夫 - 阿诺尔德 - 莫泽理论以及额外的多尺度分析,为可积系统建立了(O(Tδ^{l}ω))的误差界,其中(T)、(δ)、(l)和(ω)分别是(长)模拟时间、步长、积分器阶数和某个绑定常数。对于具有正李雅普诺夫指数的不可积系统,这样的误差界通常是不可能的,但在一个关于非线性薛定谔方程的数值实验中观察到了令人满意的统计行为。