Suppr超能文献

非线性薛定谔方程的参数自共振激发

Parametric autoresonant excitation of the nonlinear Schrödinger equation.

作者信息

Friedland L, Shagalov A G

机构信息

Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Institute of Metal Physics, Ekaterinburg 620990, Russian Federation and Ural Federal University, Mira 19, Ekaterinburg 620002, Russian Federation.

出版信息

Phys Rev E. 2016 Oct;94(4-1):042216. doi: 10.1103/PhysRevE.94.042216. Epub 2016 Oct 18.

Abstract

Parametric excitation of autoresonant solutions of the nonlinear Schrodinger (NLS) equation by a chirped frequency traveling wave is discussed. Fully nonlinear theory of the process is developed based on Whitham's averaged variational principle and its predictions verified in numerical simulations. The weakly nonlinear limit of the theory is used to find the threshold on the amplitude of the driving wave for entering the autoresonant regime. It is shown that above the threshold, a flat (spatially independent) NLS solution can be fully converted into a traveling wave. A simplified, few spatial harmonics expansion approach is also developed for studying this nonlinear mode conversion process, allowing interpretation as autoresonant interaction within triads of spatial harmonics.

摘要

讨论了啁啾频率行波对非线性薛定谔(NLS)方程自共振解的参数激励。基于惠特姆平均变分原理发展了该过程的完全非线性理论,并在数值模拟中验证了其预测结果。利用该理论的弱非线性极限来确定进入自共振状态时驱动波振幅的阈值。结果表明,高于阈值时,一个平坦(空间无关)的NLS解可以完全转换为行波。还开发了一种简化的、少数空间谐波展开方法来研究这种非线性模式转换过程,可将其解释为空间谐波三元组内的自共振相互作用。

相似文献

1
Parametric autoresonant excitation of the nonlinear Schrödinger equation.
Phys Rev E. 2016 Oct;94(4-1):042216. doi: 10.1103/PhysRevE.94.042216. Epub 2016 Oct 18.
2
Autoresonant excitation of dark solitons.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012913. doi: 10.1103/PhysRevE.91.012913. Epub 2015 Jan 20.
3
4
Excitation of multiphase waves of the nonlinear Schrödinger equation by capture into resonances.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 2A):036206. doi: 10.1103/PhysRevE.71.036206. Epub 2005 Mar 14.
5
Multiphase nonlinear electron plasma waves.
Phys Rev E. 2022 Nov;106(5-2):055201. doi: 10.1103/PhysRevE.106.055201.
6
Multiphase autoresonant excitations in discrete nonlinear Schrödinger systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 2):036604. doi: 10.1103/PhysRevE.72.036604. Epub 2005 Sep 12.
7
Excitation and control of chirped nonlinear ion-acoustic waves.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):053103. doi: 10.1103/PhysRevE.89.053103. Epub 2014 May 13.
8
Parametric autoresonant generation of dark solitons.
Phys Rev E. 2022 Aug;106(2-1):024211. doi: 10.1103/PhysRevE.106.024211.
9
Narrow autoresonant magnetization structures in finite-length ferromagnetic nanoparticles.
Phys Rev E. 2019 Sep;100(3-1):032208. doi: 10.1103/PhysRevE.100.032208.
10
Anomalous autoresonance threshold for chirped-driven Korteweg-de-Vries waves.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042924. doi: 10.1103/PhysRevE.92.042924. Epub 2015 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验