Suppr超能文献

行为风险因素监测系统(BRFSS)数据的全国加权

National weighting of data from the Behavioral Risk Factor Surveillance System (BRFSS).

作者信息

Iachan Ronaldo, Pierannunzi Carol, Healey Kristie, Greenlund Kurt J, Town Machell

机构信息

ICF International, 530 Gaither Road, Rockville, MD, 20850, USA.

National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, 4770 Buford Highway, N.E, Atlanta, GA, 30341, USA.

出版信息

BMC Med Res Methodol. 2016 Nov 15;16(1):155. doi: 10.1186/s12874-016-0255-7.

Abstract

BACKGROUND

The Behavioral Risk Factor Surveillance System (BRFSS) is a network of health-related telephone surveys--conducted by all 50 states, the District of Columbia, and participating US territories-that receive technical assistance from CDC. Data users often aggregate BRFSS state samples for national estimates without accounting for state-level sampling, a practice that could introduce bias because the weighted distributions of the state samples do not always adhere to national demographic distributions.

METHODS

This article examines six methods of reweighting, which are then compared with key health indicator estimates from the National Health Interview Survey (NHIS) based on 2013 data.

RESULTS

Compared to the usual stacking approach, all of the six new methods reduce the variance of weights and design effect at the national level, and some also reduce the estimated bias. This article also provides a comparison of the methods based on the variances induced by unequal weighting as well as the bias reduction induced by raking at the national level, and recommends a preferred method.

CONCLUSIONS

The new method leads to weighted distributions that more accurately reproduce national demographic characteristics. While the empirical results for key estimates were limited to a few health indicators, they also suggest reduction in potential bias and mean squared error. To the extent that survey outcomes are associated with these demographic characteristics, matching the national distributions will reduce bias in estimates of these outcomes at the national level.

摘要

背景

行为危险因素监测系统(BRFSS)是一个由美国所有50个州、哥伦比亚特区及参与的美国属地开展的与健康相关的电话调查网络,该系统接受疾病控制与预防中心(CDC)的技术援助。数据使用者常常将BRFSS的各州样本汇总以进行全国性估计,却未考虑州层面的抽样情况,这种做法可能会引入偏差,因为各州样本的加权分布并不总是符合全国人口分布情况。

方法

本文研究了六种重新加权的方法,然后将其与基于2013年数据的国家健康访谈调查(NHIS)中的关键健康指标估计值进行比较。

结果

与常规的叠加方法相比,所有六种新方法都降低了全国层面权重的方差和设计效应,有些方法还减少了估计偏差。本文还基于不等加权引起的方差以及全国层面耙式调整引起的偏差减少对这些方法进行了比较,并推荐了一种首选方法。

结论

新方法得出的加权分布能更准确地再现全国人口特征。虽然关键估计值的实证结果仅限于少数健康指标,但这些结果也表明潜在偏差和均方误差有所减少。就调查结果与这些人口特征相关的程度而言,与全国分布相匹配将减少全国层面这些结果估计中的偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f7/5109644/0d3c70e326c8/12874_2016_255_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验