Suppr超能文献

在多重网络上建模传染病传播中异质性和意识的影响。

The Impact of Heterogeneity and Awareness in Modeling Epidemic Spreading on Multiplex Networks.

机构信息

University of Catania, Dipartimento di Ingegneria Elettrica, Elettronica e Informatica, Catania, 95125, Italy.

University of Cambridge, Computer Laboratory, Cambridge (UK), CB3OFD, UK.

出版信息

Sci Rep. 2016 Nov 16;6:37105. doi: 10.1038/srep37105.

Abstract

In the real world, dynamic processes involving human beings are not disjoint. To capture the real complexity of such dynamics, we propose a novel model of the coevolution of epidemic and awareness spreading processes on a multiplex network, also introducing a preventive isolation strategy. Our aim is to evaluate and quantify the joint impact of heterogeneity and awareness, under different socioeconomic conditions. Considering, as case study, an emerging public health threat, Zika virus, we introduce a data-driven analysis by exploiting multiple sources and different types of data, ranging from Big Five personality traits to Google Trends, related to different world countries where there is an ongoing epidemic outbreak. Our findings demonstrate how the proposed model allows delaying the epidemic outbreak and increasing the resilience of nodes, especially under critical economic conditions. Simulation results, using data-driven approach on Zika virus, which has a growing scientific research interest, are coherent with the proposed analytic model.

摘要

在现实世界中,涉及人类的动态过程并非是不相关的。为了捕捉这种动态的真正复杂性,我们提出了一种在多重网络上同时演化的传染病和意识传播过程的新模型,同时引入了一种预防隔离策略。我们的目的是在不同的社会经济条件下,评估和量化异质性和意识的共同影响。考虑到作为案例研究的新兴公共卫生威胁,寨卡病毒,我们通过利用多个来源和不同类型的数据进行了数据驱动的分析,这些数据涉及到不同的世界国家,这些国家正在爆发疫情。我们的研究结果表明,所提出的模型如何允许延迟传染病的爆发,并提高节点的弹性,特别是在关键的经济条件下。使用对寨卡病毒的基于数据的方法的模拟结果,这是一个越来越受到科学研究关注的病毒,与所提出的分析模型是一致的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9197/5111071/554578975662/srep37105-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验