Suppr超能文献

利用溶胶-凝胶法快速成核合成硅纳米粒子。

Fast nucleation for silica nanoparticle synthesis using a sol-gel method.

机构信息

Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.

Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA.

出版信息

Nanoscale. 2016 Dec 1;8(47):19662-19667. doi: 10.1039/c6nr07568a.

Abstract

We have developed a method that for the first time allowed us to synthesize silica particles in 20 minutes using a sol-gel preparation. Therefore, it is critically important to understand the synthesis mechanism and kinetic behavior in order to achieve a higher degree of fine tuning ability during the synthesis. In this study, we have employed our ability to modulate the physical nature of the reaction medium from sol-gel to emulsion, which has allowed us to halt the reaction at a particular time; this has allowed us to precisely understand the mechanism and chemistry of the silica polymerization. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as a precursor in an equi-volumetric ethanol-water system and with sodium hydroxide as a catalyst. Synthesis is performed under ambient conditions at 20 °C for 20 minutes followed by phasing out of any unreacted TEOS and polysilicic acid chains via their emulsification with supersaturated water. We have also demonstrated that the developed particles with various sizes can be used as seeds for further particle growth and other applications. Luminol, a chemiluminescent molecule, has been entrapped successfully between the layers of silica and was demonstrated for the chemiluminescence of these particles.

摘要

我们开发了一种方法,首次能够在 20 分钟内使用溶胶-凝胶法制备合成二氧化硅颗粒。因此,为了在合成过程中实现更高程度的精细调控能力,理解合成的机理和动力学行为至关重要。在这项研究中,我们利用调节反应介质物理性质的能力,使溶胶-凝胶转变为乳液,从而能够在特定时间停止反应;这使我们能够精确理解二氧化硅聚合的机理和化学过程。合成介质非常简单,以四乙氧基硅烷(TEOS)作为前体,在等体积的乙醇-水体系中,并使用氢氧化钠作为催化剂。在 20°C 下,在环境条件下进行合成 20 分钟,然后通过用过饱和水乳化未反应的 TEOS 和多硅酸链,使反应终止。我们还证明了具有各种尺寸的开发出的颗粒可用作进一步颗粒生长和其他应用的种子。鲁米诺,一种化学发光分子,已成功地被包裹在二氧化硅层之间,并证明了这些颗粒的化学发光。

相似文献

1
Fast nucleation for silica nanoparticle synthesis using a sol-gel method.
Nanoscale. 2016 Dec 1;8(47):19662-19667. doi: 10.1039/c6nr07568a.
2
Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles.
Mater Res Express. 2016 Jul;3(7). doi: 10.1088/2053-1591/3/7/075025. Epub 2016 Jul 29.
6
A novel method for synthesis of silica nanoparticles.
J Colloid Interface Sci. 2005 Sep 1;289(1):125-31. doi: 10.1016/j.jcis.2005.02.019.
8
Synthesis of silica nanoparticles using biomimetic mineralization with polyallylamine hydrochloride.
J Colloid Interface Sci. 2017 Dec 1;507:145-153. doi: 10.1016/j.jcis.2017.07.115. Epub 2017 Jul 31.
9
Encapsulation and retention of decanoic acid in sol-gel-made silicas.
J Colloid Interface Sci. 2005 Mar 15;283(2):495-502. doi: 10.1016/j.jcis.2004.09.033.
10
Synthesis and characterization of hollow silica particles from tetraethyl orthosilicate and sodium silicate.
J Nanosci Nanotechnol. 2013 Mar;13(3):2284-8. doi: 10.1166/jnn.2013.7074.

引用本文的文献

1
Nanoengineered Silica-Based Biomaterials for Regenerative Medicine.
Int J Mol Sci. 2024 Jun 1;25(11):6125. doi: 10.3390/ijms25116125.
3
Formation of intraneuronal iron deposits following local release from nanostructured silica injected into rat brain parenchyma.
Heliyon. 2024 Mar 14;10(6):e27786. doi: 10.1016/j.heliyon.2024.e27786. eCollection 2024 Mar 30.
4
A facile cost-effective electrolyte-assisted approach and comparative study towards the Greener synthesis of silica nanoparticles.
Nanoscale Adv. 2023 Feb 2;5(5):1386-1396. doi: 10.1039/d2na00872f. eCollection 2023 Feb 28.
5
Inorganic nanoparticles as scaffolds for bioorthogonal catalysts.
Adv Drug Deliv Rev. 2023 Apr;195:114730. doi: 10.1016/j.addr.2023.114730. Epub 2023 Feb 13.
8
Recent advances in the application of silica nanostructures for highly improved water treatment: a review.
Environ Sci Pollut Res Int. 2019 Jul;26(21):21065-21084. doi: 10.1007/s11356-019-05428-z. Epub 2019 May 23.
9
Kinetics of Alkoxysilanes and Organoalkoxysilanes Polymerization: A Review.
Polymers (Basel). 2019 Mar 21;11(3):537. doi: 10.3390/polym11030537.
10
Novel epoxy-silica nanoparticles to develop non-enzymatic colorimetric probe for analytical immuno/bioassays.
Anal Chim Acta. 2018 Oct 22;1028:77-85. doi: 10.1016/j.aca.2018.04.044. Epub 2018 Apr 24.

本文引用的文献

1
Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles.
Mater Res Express. 2016 Jul;3(7). doi: 10.1088/2053-1591/3/7/075025. Epub 2016 Jul 29.
3
Controlling aqueous silica nanoparticle synthesis in the 10-100 nm range.
Chem Commun (Camb). 2015 Dec 21;51(98):17420-3. doi: 10.1039/c5cc06598d. Epub 2015 Oct 15.
4
Mesoporous silica nanoparticles in drug delivery and biomedical applications.
Nanomedicine. 2015 Feb;11(2):313-27. doi: 10.1016/j.nano.2014.09.014. Epub 2014 Nov 13.
5
Mechanisms of nucleation and growth of nanoparticles in solution.
Chem Rev. 2014 Aug 13;114(15):7610-30. doi: 10.1021/cr400544s. Epub 2014 Jul 8.
6
Nucleation and growth of monodisperse silica nanoparticles.
Nano Lett. 2014 Mar 12;14(3):1433-8. doi: 10.1021/nl404550d. Epub 2014 Feb 11.
8
Controlled microwave-assisted growth of silica nanoparticles under acid catalysis.
ACS Appl Mater Interfaces. 2012 Dec;4(12):6875-83. doi: 10.1021/am3020247. Epub 2012 Dec 5.
10
Functional silica nanoparticles synthesized by water-in-oil microemulsion processes.
J Colloid Interface Sci. 2010 Jan 15;341(2):201-8. doi: 10.1016/j.jcis.2009.09.064. Epub 2009 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验