Holzhauer Björn
Biostatistical Sciences and Pharmacometrics, Novartis Pharma AG, Basel, Switzerland.
Stat Med. 2017 Feb 28;36(5):723-737. doi: 10.1002/sim.7181. Epub 2016 Nov 18.
Meta-analyses of clinical trials often treat the number of patients experiencing a medical event as binomially distributed when individual patient data for fitting standard time-to-event models are unavailable. Assuming identical drop-out time distributions across arms, random censorship, and low proportions of patients with an event, a binomial approach results in a valid test of the null hypothesis of no treatment effect with minimal loss in efficiency compared with time-to-event methods. To deal with differences in follow-up-at the cost of assuming specific distributions for event and drop-out times-we propose a hierarchical multivariate meta-analysis model using the aggregate data likelihood based on the number of cases, fatal cases, and discontinuations in each group, as well as the planned trial duration and groups sizes. Such a model also enables exchangeability assumptions about parameters of survival distributions, for which they are more appropriate than for the expected proportion of patients with an event across trials of substantially different length. Borrowing information from other trials within a meta-analysis or from historical data is particularly useful for rare events data. Prior information or exchangeability assumptions also avoid the parameter identifiability problems that arise when using more flexible event and drop-out time distributions than the exponential one. We discuss the derivation of robust historical priors and illustrate the discussed methods using an example. We also compare the proposed approach against other aggregate data meta-analysis methods in a simulation study. Copyright © 2016 John Wiley & Sons, Ltd.
当无法获得用于拟合标准事件发生时间模型的个体患者数据时,临床试验的荟萃分析通常将发生医疗事件的患者数量视为二项分布。假设各治疗组的失访时间分布相同、存在随机删失,且发生事件的患者比例较低,与事件发生时间方法相比,二项式方法能在效率损失最小的情况下对无治疗效果的原假设进行有效检验。为了处理随访差异(代价是假设事件和失访时间的特定分布),我们基于每组中的病例数、死亡病例数和失访数,以及计划的试验持续时间和组规模,提出了一种使用汇总数据似然性的分层多变量荟萃分析模型。这样的模型还能对生存分布参数做出可交换性假设,相较于在长度差异很大的试验中对发生事件患者的预期比例,这种假设更为合适。在荟萃分析中从其他试验或历史数据中借用信息对于罕见事件数据尤为有用。先验信息或可交换性假设还能避免在使用比指数分布更灵活的事件和失访时间分布时出现的参数可识别性问题。我们讨论了稳健历史先验的推导,并通过一个例子说明了所讨论的方法。我们还在模拟研究中将所提出的方法与其他汇总数据荟萃分析方法进行了比较。版权所有© 2016约翰威立父子有限公司。