Li Xiuqiang, Xu Weichao, Tang Mingyao, Zhou Lin, Zhu Bin, Zhu Shining, Zhu Jia
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, Nanjing University, Nanjing 210093, China.
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):13953-13958. doi: 10.1073/pnas.1613031113. Epub 2016 Nov 21.
Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber-bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution.
由于能够直接利用太阳能生产脱盐水,且碳足迹最小,太阳能蒸汽发生与脱盐被视为解决日益紧迫的全球水资源短缺问题的最重要技术之一。尽管在过去几年中取得了巨大进展,但在聚光器和隔热的辅助下,高效的太阳能蒸汽发生与脱盐仅能在相当有限的水量下实现,对于大规模应用并不可行。根本矛盾在于,传统的直接吸收体与大量水接触的设计确保了高效的能量传递和供水,但也存在通过大量水产生的固有热损失。在此,借助受限的二维水路,我们报告了一种高效(在一个太阳光照下效率达80%)且有效的(盐度降低四个数量级)太阳能脱盐装置。更引人注目的是,由于热损失最小化,太阳能脱盐的高效率与水量无关,且无需对容器进行隔热就能保持。通过可扩展工艺制造的可折叠氧化石墨烯薄膜,可作为高效的太阳能吸收体(>94%)、蒸汽通道和隔热体。凭借通过可扩展工艺制造的独特结构设计,以及在正常太阳光照下实现的与水量无关且无需任何支撑系统的高且稳定的效率,我们的装置代表了太阳能脱盐朝着成为一种互补的便携式和个性化清洁水解决方案迈出的具体一步。