Li Bin, Cheng Kaili, Yu Zhezhou
School of Information Engineering, Northeast Electric Power University, Jilin 132012, China.
School of Computer Science and Technology, Jilin University, Changchun 130012, China.
Comput Intell Neurosci. 2016;2016:6749325. doi: 10.1155/2016/6749325. Epub 2016 Oct 31.
We proposed a new method of gist feature extraction for building recognition and named the feature extracted by this method as the histogram of oriented gradient based gist (HOG-gist). The proposed method individually computes the normalized histograms of multiorientation gradients for the same image with four different scales. The traditional approach uses the Gabor filters with four angles and four different scales to extract orientation gist feature vectors from an image. Our method, in contrast, uses the normalized histogram of oriented gradient as orientation gist feature vectors of the same image. These HOG-based orientation gist vectors, combined with intensity and color gist feature vectors, are the proposed HOG-gist vectors. In general, the HOG-gist contains four multiorientation histograms (four orientation gist feature vectors), and its texture description ability is stronger than that of the traditional gist using Gabor filters with four angles. Experimental results using Sheffield Buildings Database verify the feasibility and effectiveness of the proposed HOG-gist.
我们提出了一种用于建筑物识别的新的主旨特征提取方法,并将通过该方法提取的特征命名为基于方向梯度直方图的主旨(HOG-主旨)。所提出的方法针对同一图像,分别在四个不同尺度下计算多方向梯度的归一化直方图。传统方法使用具有四个角度和四个不同尺度的Gabor滤波器从图像中提取方向主旨特征向量。相比之下,我们的方法使用方向梯度的归一化直方图作为同一图像的方向主旨特征向量。这些基于HOG的方向主旨向量,与强度和颜色主旨特征向量相结合,就是所提出的HOG-主旨向量。一般来说,HOG-主旨包含四个多方向直方图(四个方向主旨特征向量),其纹理描述能力比使用具有四个角度的Gabor滤波器的传统主旨更强。使用谢菲尔德建筑数据库的实验结果验证了所提出的HOG-主旨的可行性和有效性。