Wang Changcheng, Liao Mingsheng, Li Xiaofeng
State Key Laboratory of Information Engineering in Survey, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan, Hubei 430079, P. R. China.
NOAA Science Center, WWBG, Room 102, 5200 Auth Road, Camp Springs, MD 20746, U.S.A..
Sensors (Basel). 2008 Aug 22;8(8):4948-4960. doi: 10.3390/s8084948.
This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alphastable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR images when several radar looks are averaged. As sea clutter in SAR images shows spiky or heavy-tailed characteristics, the Gaussian distribution often fails to describe background sea clutter. In this study, we replace the Gaussian distribution with the Alpha-stable distribution, which is widely used in impulsive or spiky signal processing, to describe the background sea clutter in SAR images. In our proposed algorithm, an initial step for detecting possible ship targets is employed. Then, similar to the typical two-parameter CFAR algorithm, a local process is applied to the pixel identified as possible target. A RADARSAT-1 image is used to validate this Alpha-stable distribution based algorithm. Meanwhile, known ship location data during the time of RADARSAT-1 SAR image acquisition is used to validate ship detection results. Validation results show improvements of the new CFAR algorithm based on the Alpha-stable distribution over the CFAR algorithm based on the Gaussian distribution.
本文介绍了一种基于α稳定分布模型的星载合成孔径雷达(SAR)图像中改进的恒虚警率(CFAR)舰船检测算法。通常,CFAR算法使用高斯分布模型来描述SAR图像背景杂波的统计特征。然而,高斯分布仅在对多个雷达视数进行平均时对多视SAR图像有效。由于SAR图像中的海杂波呈现尖峰或重尾特征,高斯分布常常无法描述背景海杂波。在本研究中,我们用在脉冲或尖峰信号处理中广泛使用的α稳定分布来代替高斯分布,以描述SAR图像中的背景海杂波。在我们提出的算法中,首先采用一个步骤来检测可能的舰船目标。然后,类似于典型的双参数CFAR算法,对被识别为可能目标的像素应用局部处理。使用RADARSAT-1图像来验证这种基于α稳定分布的算法。同时,利用RADARSAT-1 SAR图像采集期间已知的舰船位置数据来验证舰船检测结果。验证结果表明,基于α稳定分布的新CFAR算法相对于基于高斯分布的CFAR算法有改进。