Suppr超能文献

使用液体前体制备纳米孔中的硅沉积。

Silicon deposition in nanopores using a liquid precursor.

机构信息

School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.

Toyota Central R&D Labs. Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.

出版信息

Sci Rep. 2016 Nov 22;6:37689. doi: 10.1038/srep37689.

Abstract

Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

摘要

将硅沉积到纳米级空间的技术对于半导体行业中下一代器件的进一步缩小至关重要。在这项研究中,我们利用基于汽化环戊硅烷 (CPS) 的范德华能的热力学行为,将硅填充到具有 70 纵横比的 3.5nm 直径的纳米孔中。我们最初将 CPS 合成作为半导体硅的液体前体。在这里,我们在大气压下的热化学气相沉积中使用 CPS 作为气源,因为汽化的 CPS 可以自发填充纳米孔。我们根据 Lifshitz 范德华理论对 CPS 的自由能进行了估计,阐明了填充机制,其中与其他蒸气(如水、甲苯、硅烷和二硅烷)相比,纳米孔中的 CPS 蒸气由于其较大的摩尔体积而容易发生毛管凝结。因此,在沉积过程中观察到了液体特有的特征;具体来说,凝聚的 CPS 通过毛细作用力自发地渗透到纳米孔中。然后,通过在 400°C 下的热分解将填充纳米孔的 CPS 转化为固体硅。所开发的方法有望用作纳米级硅填充技术,这对于制造未来的量子尺度硅器件至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba80/5118725/356d188c0797/srep37689-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验