Huxley Michael T, Coghlan Campbell J, Bloch Witold M, Burgun Alexandre, Doonan Christian J, Sumby Christopher J
Department of Chemistry and the Centre for Advanced Nanomaterials, School of Physcial Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.
Department of Chemistry and the Centre for Advanced Nanomaterials, School of Physcial Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
Philos Trans A Math Phys Eng Sci. 2017 Jan 13;375(2084). doi: 10.1098/rsta.2016.0028.
Post-synthetic modification of metal-organic frameworks (MOFs) facilitates a strategic transformation of potentially inert frameworks into functionalized materials, tailoring them for specific applications. In particular, the post-synthetic incorporation of transition-metal complexes within MOFs, a process known as 'metalation', is a particularly promising avenue towards functionalizing MOFs. Herein, we describe the post-synthetic metalation of a microporous MOF with various transition-metal nitrates. The parent framework, 1: , contains free-nitrogen donor chelation sites, which readily coordinate metal complexes in a single-crystal to single-crystal transformation which, remarkably, can be readily monitored by X-ray crystallography. The presence of an open void surrounding the chelation site in 1: prompted us to investigate the effect of the MOF pore environment on included metal complexes, particularly examining whether void space would induce changes in the coordination sphere of chelated complexes reminiscent of those found in the solution state. To test this hypothesis, we systematically metalated 1: with first-row transition-metal nitrates and elucidated the coordination environment of the respective transition-metal complexes using X-ray crystallography. Comparison of the coordination sphere parameters of coordinated transition-metal complexes in 1: against equivalent solid- and solution-state species suggests that the void space in 1: does not markedly influence the coordination sphere of chelated species but we show notably different post-synthetic metalation outcomes when different solvents are used.This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.
金属有机框架材料(MOFs)的合成后修饰有助于将潜在的惰性框架材料战略性地转变为功能化材料,使其适用于特定应用。特别是,在MOFs中合成后引入过渡金属配合物(这一过程称为“金属化”)是使MOFs功能化的一条特别有前景的途径。在此,我们描述了一种微孔MOF与各种过渡金属硝酸盐的合成后金属化过程。母体框架材料1: 含有游离氮供体螯合位点,这些位点能在单晶到单晶的转变过程中轻松地与金属配合物配位,值得注意的是,这一过程可以通过X射线晶体学轻松监测。1: 中螯合位点周围存在开放空隙,这促使我们研究MOF孔环境对所包含金属配合物的影响,特别是考察空隙空间是否会引起螯合配合物配位球的变化,这种变化类似于在溶液状态下观察到的情况。为了验证这一假设,我们用第一行过渡金属硝酸盐系统地对1: 进行了金属化,并通过X射线晶体学阐明了相应过渡金属配合物的配位环境。将1: 中配位过渡金属配合物的配位球参数与等效的固态和溶液态物种进行比较表明,1: 中的空隙空间不会显著影响螯合物种的配位球,但我们发现使用不同溶剂时合成后金属化的结果有显著差异。本文是主题为“配位聚合物和金属有机框架材料:设计材料”的特刊的一部分。