Suppr超能文献

药物相关事件的临床决策支持:迈向更好的预防

Clinical decision support for drug related events: Moving towards better prevention.

作者信息

Kane-Gill Sandra L, Achanta Archita, Kellum John A, Handler Steven M

机构信息

Sandra L Kane-Gill, Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States.

出版信息

World J Crit Care Med. 2016 Nov 4;5(4):204-211. doi: 10.5492/wjccm.v5.i4.204.

Abstract

Clinical decision support (CDS) systems with automated alerts integrated into electronic medical records demonstrate efficacy for detecting medication errors (ME) and adverse drug events (ADEs). Critically ill patients are at increased risk for ME, ADEs and serious negative outcomes related to these events. Capitalizing on CDS to detect ME and prevent adverse drug related events has the potential to improve patient outcomes. The key to an effective medication safety surveillance system incorporating CDS is advancing the signals for alerts by using trajectory analyses to predict clinical events, instead of waiting for these events to occur. Additionally, incorporating cutting-edge biomarkers into alert knowledge in an effort to identify the need to adjust medication therapy portending harm will advance the current state of CDS. CDS can be taken a step further to identify drug related physiological events, which are less commonly included in surveillance systems. Predictive models for adverse events that combine patient factors with laboratory values and biomarkers are being established and these models can be the foundation for individualized CDS alerts to prevent impending ADEs.

摘要

集成到电子病历中的带有自动警报功能的临床决策支持(CDS)系统已证明在检测用药错误(ME)和药物不良事件(ADE)方面具有功效。重症患者发生ME、ADE以及与这些事件相关的严重负面结果的风险增加。利用CDS来检测ME并预防药物相关不良事件有可能改善患者预后。一个有效的包含CDS的用药安全监测系统的关键在于,通过使用轨迹分析来预测临床事件,而不是等待这些事件发生,从而推进警报信号。此外,将前沿生物标志物纳入警报知识中,以识别调整可能造成伤害的药物治疗的必要性,这将推动CDS的现状发展。CDS可以进一步发展以识别与药物相关的生理事件,而这些事件在监测系统中较少被纳入。结合患者因素、实验室值和生物标志物的不良事件预测模型正在建立,这些模型可以成为个性化CDS警报的基础,以预防即将发生的ADE。

相似文献

1
Clinical decision support for drug related events: Moving towards better prevention.
World J Crit Care Med. 2016 Nov 4;5(4):204-211. doi: 10.5492/wjccm.v5.i4.204.
2
Prospective evaluation of medication-related clinical decision support over-rides in the intensive care unit.
BMJ Qual Saf. 2018 Sep;27(9):718-724. doi: 10.1136/bmjqs-2017-007531. Epub 2018 Feb 9.
3
Evaluation of medication-related clinical decision support alert overrides in the intensive care unit.
J Crit Care. 2017 Jun;39:156-161. doi: 10.1016/j.jcrc.2017.02.027. Epub 2017 Feb 20.
7
Improving medication-related clinical decision support.
Am J Health Syst Pharm. 2018 Feb 15;75(4):239-246. doi: 10.2146/ajhp160830.
8
From adverse drug event detection to prevention. A novel clinical decision support framework for medication safety.
Methods Inf Med. 2014;53(6):482-92. doi: 10.3414/ME14-01-0027. Epub 2014 Nov 7.

引用本文的文献

1
Characterization of children's prospective prescription review and exploration of factors influencing the success of interventions.
Ther Adv Drug Saf. 2025 Jan 6;16:20420986241311448. doi: 10.1177/20420986241311448. eCollection 2025.
2
Detection of Drug-Related Problems through a Clinical Decision Support System Used by a Clinical Pharmacy Team.
Healthcare (Basel). 2023 Mar 11;11(6):827. doi: 10.3390/healthcare11060827.
4
Local, Early, and Precise: Designing a Clinical Decision Support System for Child and Adolescent Mental Health Services.
Front Psychiatry. 2020 Dec 15;11:564205. doi: 10.3389/fpsyt.2020.564205. eCollection 2020.
10
Advances in Clinical Decision Support: Highlights of Practice and the Literature 2015-2016.
Yearb Med Inform. 2017 Aug;26(1):125-132. doi: 10.15265/IY-2017-012. Epub 2017 Sep 11.

本文引用的文献

1
A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury.
Kidney Int. 2016 Jul;90(1):212-21. doi: 10.1016/j.kint.2016.03.031. Epub 2016 May 21.
4
Electronic Data Systems and Acute Kidney Injury.
Contrib Nephrol. 2016;187:73-83. doi: 10.1159/000442367. Epub 2016 Feb 8.
5
TIMP2•IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients.
J Trauma Acute Care Surg. 2016 Feb;80(2):243-9. doi: 10.1097/TA.0000000000000912.
6
Biomarkers of drug-induced acute kidney injury in the adult.
Expert Opin Drug Metab Toxicol. 2015;11(11):1683-94. doi: 10.1517/17425255.2015.1083011. Epub 2015 Sep 7.
7
Triage sepsis alert and sepsis protocol lower times to fluids and antibiotics in the ED.
Am J Emerg Med. 2016 Jan;34(1):1-9. doi: 10.1016/j.ajem.2015.08.039. Epub 2015 Aug 28.
8
Development and validation of electronic surveillance tool for acute kidney injury: A retrospective analysis.
J Crit Care. 2015 Oct;30(5):988-93. doi: 10.1016/j.jcrc.2015.05.007. Epub 2015 May 19.
9
Drug-induced liver injury: the dawn of biomarkers?
F1000Prime Rep. 2015 Mar 3;7:34. doi: 10.12703/P7-34. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验