Suppr超能文献

一种用于检测罕见和常见变异的多效性的通用方法。

A general approach to testing for pleiotropy with rare and common variants.

作者信息

Lutz Sharon M, Fingerlin Tasha E, Hokanson John E, Lange Christoph

机构信息

Department of Biostatistics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.

Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.

出版信息

Genet Epidemiol. 2017 Feb;41(2):163-170. doi: 10.1002/gepi.22011. Epub 2016 Nov 30.

Abstract

Through genome-wide association studies, numerous genes have been shown to be associated with multiple phenotypes. To determine the overlap of genetic susceptibility of correlated phenotypes, one can apply multivariate regression or dimension reduction techniques, such as principal components analysis, and test for the association with the principal components of the phenotypes rather than the individual phenotypes. However, as these approaches test whether there is a genetic effect for at least one of the phenotypes, a significant test result does not necessarily imply pleiotropy. Recently, a method called Pleiotropy Estimation and Test Bootstrap (PET-B) has been proposed to specifically test for pleiotropy (i.e., that two normally distributed phenotypes are both associated with the single nucleotide polymorphism of interest). Although the method examines the genetic overlap between the two quantitative phenotypes, the extension to binary phenotypes, three or more phenotypes, and rare variants is not straightforward. We provide two approaches to formally test this pleiotropic relationship in multiple scenarios. These approaches depend on permuting the phenotypes of interest and comparing the set of observed P-values to the set of permuted P-values in relation to the origin (e.g., a vector of zeros) either using the Hausdorff metric or a cutoff-based approach. These approaches are appropriate for categorical and quantitative phenotypes, more than two phenotypes, common variants and rare variants. We evaluate these approaches under various simulation scenarios and apply them to the COPDGene study, a case-control study of chronic obstructive pulmonary disease in current and former smokers.

摘要

通过全基因组关联研究,已表明许多基因与多种表型相关。为了确定相关表型的遗传易感性重叠情况,可以应用多变量回归或降维技术,如主成分分析,并检验与表型主成分而非单个表型的关联性。然而,由于这些方法检验的是至少一种表型是否存在遗传效应,显著的检验结果并不一定意味着多效性。最近,一种名为多效性估计与检验自展法(PET-B)的方法被提出来专门检验多效性(即两种正态分布的表型都与感兴趣的单核苷酸多态性相关)。尽管该方法研究了两种定量表型之间的遗传重叠,但将其扩展到二元表型、三种或更多表型以及罕见变异并非易事。我们提供了两种方法来在多种情况下正式检验这种多效性关系。这些方法依赖于对感兴趣的表型进行置换,并使用豪斯多夫度量或基于临界值的方法,将观察到的P值集与相对于原点(例如零向量)的置换P值集进行比较。这些方法适用于分类和定量表型、两种以上表型、常见变异和罕见变异。我们在各种模拟情况下评估了这些方法,并将它们应用于慢性阻塞性肺疾病基因(COPDGene)研究,这是一项针对当前和既往吸烟者的慢性阻塞性肺疾病病例对照研究。

相似文献

1
A general approach to testing for pleiotropy with rare and common variants.
Genet Epidemiol. 2017 Feb;41(2):163-170. doi: 10.1002/gepi.22011. Epub 2016 Nov 30.
2
Assessing pleiotropy and mediation in genetic loci associated with chronic obstructive pulmonary disease.
Genet Epidemiol. 2019 Apr;43(3):318-329. doi: 10.1002/gepi.22192. Epub 2019 Feb 11.
3
Estimating and testing pleiotropy of single genetic variant for two quantitative traits.
Genet Epidemiol. 2014 Sep;38(6):523-30. doi: 10.1002/gepi.21837. Epub 2014 Jul 12.
5
Genome-wide association analysis for multiple continuous secondary phenotypes.
Am J Hum Genet. 2013 May 2;92(5):744-59. doi: 10.1016/j.ajhg.2013.04.004.
6
PLEIO: a method to map and interpret pleiotropic loci with GWAS summary statistics.
Am J Hum Genet. 2021 Jan 7;108(1):36-48. doi: 10.1016/j.ajhg.2020.11.017. Epub 2020 Dec 21.
7
Testing Genetic Pleiotropy with GWAS Summary Statistics for Marginal and Conditional Analyses.
Genetics. 2017 Dec;207(4):1285-1299. doi: 10.1534/genetics.117.300347. Epub 2017 Oct 2.
9
A novel method for multiple phenotype association studies based on genotype and phenotype network.
PLoS Genet. 2024 May 10;20(5):e1011245. doi: 10.1371/journal.pgen.1011245. eCollection 2024 May.
10
JASPER: Fast, powerful, multitrait association testing in structured samples gives insight on pleiotropy in gene expression.
Am J Hum Genet. 2024 Aug 8;111(8):1750-1769. doi: 10.1016/j.ajhg.2024.06.010. Epub 2024 Jul 17.

引用本文的文献

4
A computationally efficient clustering linear combination approach to jointly analyze multiple phenotypes for GWAS.
PLoS One. 2022 Apr 28;17(4):e0260911. doi: 10.1371/journal.pone.0260911. eCollection 2022.
5
A Novel Hierarchical Clustering Approach for Joint Analysis of Multiple Phenotypes Uncovers Obesity Variants Based on ARIC.
Front Genet. 2022 Mar 22;13:791920. doi: 10.3389/fgene.2022.791920. eCollection 2022.
7
mTADA is a framework for identifying risk genes from de novo mutations in multiple traits.
Nat Commun. 2020 Jun 10;11(1):2929. doi: 10.1038/s41467-020-16487-z.
8
Genetic Advances in Chronic Obstructive Pulmonary Disease. Insights from COPDGene.
Am J Respir Crit Care Med. 2019 Sep 15;200(6):677-690. doi: 10.1164/rccm.201808-1455SO.
9
Assessing pleiotropy and mediation in genetic loci associated with chronic obstructive pulmonary disease.
Genet Epidemiol. 2019 Apr;43(3):318-329. doi: 10.1002/gepi.22192. Epub 2019 Feb 11.
10
A hierarchical clustering method for dimension reduction in joint analysis of multiple phenotypes.
Genet Epidemiol. 2018 Jun;42(4):344-353. doi: 10.1002/gepi.22124. Epub 2018 Apr 22.

本文引用的文献

1
Disentangling the multigenic and pleiotropic nature of molecular function.
BMC Syst Biol. 2015;9 Suppl 6(Suppl 6):S3. doi: 10.1186/1752-0509-9-S6-S3. Epub 2015 Dec 9.
3
A Genome-Wide Association Study of Emphysema and Airway Quantitative Imaging Phenotypes.
Am J Respir Crit Care Med. 2015 Sep 1;192(5):559-69. doi: 10.1164/rccm.201501-0148OC.
4
CHRNA5 risk variant predicts delayed smoking cessation and earlier lung cancer diagnosis--a meta-analysis.
J Natl Cancer Inst. 2015 Apr 14;107(5). doi: 10.1093/jnci/djv100. Print 2015 May.
5
Permutation testing in the presence of polygenic variation.
Genet Epidemiol. 2015 May;39(4):249-58. doi: 10.1002/gepi.21893. Epub 2015 Mar 10.
6
An alternative hypothesis testing strategy for secondary phenotype data in case-control genetic association studies.
Front Genet. 2014 Jul 1;5:188. doi: 10.3389/fgene.2014.00188. eCollection 2014.
7
Estimating and testing pleiotropy of single genetic variant for two quantitative traits.
Genet Epidemiol. 2014 Sep;38(6):523-30. doi: 10.1002/gepi.21837. Epub 2014 Jul 12.
8
Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis.
Lancet Respir Med. 2014 Mar;2(3):214-25. doi: 10.1016/S2213-2600(14)70002-5. Epub 2014 Feb 7.
9
Testing for direct genetic effects using a screening step in family-based association studies.
Front Genet. 2013 Nov 21;4:243. doi: 10.3389/fgene.2013.00243. eCollection 2013.
10
Analysis of multiple phenotypes in genome-wide genetic mapping studies.
BMC Bioinformatics. 2013 May 2;14:151. doi: 10.1186/1471-2105-14-151.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验