Suppr超能文献

扩散磁共振成像中神经突密度成像与微观各向异性成像的比较:使用球张量编码的模型对比

Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding.

作者信息

Lampinen Björn, Szczepankiewicz Filip, Mårtensson Johan, van Westen Danielle, Sundgren Pia C, Nilsson Markus

机构信息

Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden.

Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden.

出版信息

Neuroimage. 2017 Feb 15;147:517-531. doi: 10.1016/j.neuroimage.2016.11.053. Epub 2016 Nov 27.

Abstract

In diffusion MRI (dMRI), microscopic diffusion anisotropy can be obscured by orientation dispersion. Separation of these properties is of high importance, since it could allow dMRI to non-invasively probe elongated structures such as neurites (axons and dendrites). However, conventional dMRI, based on single diffusion encoding (SDE), entangles microscopic anisotropy and orientation dispersion with intra-voxel variance in isotropic diffusivity. SDE-based methods for estimating microscopic anisotropy, such as the neurite orientation dispersion and density imaging (NODDI) method, must thus rely on model assumptions to disentangle these features. An alternative approach is to directly quantify microscopic anisotropy by the use of variable shape of the b-tensor. Along those lines, we here present the 'constrained diffusional variance decomposition' (CODIVIDE) method, which jointly analyzes data acquired with diffusion encoding applied in a single direction at a time (linear tensor encoding, LTE) and in all directions (spherical tensor encoding, STE). We then contrast the two approaches by comparing neurite density estimated using NODDI with microscopic anisotropy estimated using CODIVIDE. Data were acquired in healthy volunteers and in glioma patients. NODDI and CODIVIDE differed the most in gray matter and in gliomas, where NODDI detected a neurite fraction higher than expected from the level of microscopic diffusion anisotropy found with CODIVIDE. The discrepancies could be explained by the NODDI tortuosity assumption, which enforces a connection between the neurite density and the mean diffusivity of tissue. Our results suggest that this assumption is invalid, which leads to a NODDI neurite density that is inconsistent between LTE and STE data. Using simulations, we demonstrate that the NODDI assumptions result in parameter bias that precludes the use of NODDI to map neurite density. With CODIVIDE, we found high levels of microscopic anisotropy in white matter, intermediate levels in structures such as the thalamus and the putamen, and low levels in the cortex and in gliomas. We conclude that accurate mapping of microscopic anisotropy requires data acquired with variable shape of the b-tensor.

摘要

在扩散磁共振成像(dMRI)中,微观扩散各向异性可能会被方向离散所掩盖。分离这些特性非常重要,因为这可以使dMRI能够非侵入性地探测诸如神经突(轴突和树突)等细长结构。然而,基于单扩散编码(SDE)的传统dMRI将微观各向异性和方向离散与各向同性扩散率中的体素内方差纠缠在一起。因此,基于SDE的估计微观各向异性的方法,如神经突方向离散和密度成像(NODDI)方法,必须依赖模型假设来分离这些特征。另一种方法是通过使用可变形状的b张量直接量化微观各向异性。沿着这些思路,我们在此提出“约束扩散方差分解”(CODIVIDE)方法,该方法联合分析一次在单个方向(线性张量编码,LTE)和所有方向(球形张量编码,STE)应用扩散编码获取的数据。然后,我们通过比较使用NODDI估计的神经突密度与使用CODIVIDE估计的微观各向异性来对比这两种方法。数据是在健康志愿者和胶质瘤患者中采集的。NODDI和CODIVIDE在灰质和胶质瘤中差异最大,其中NODDI检测到的神经突分数高于根据CODIVIDE发现的微观扩散各向异性水平所预期的分数。这些差异可以用NODDI曲折假设来解释,该假设强制神经突密度与组织的平均扩散率之间建立联系。我们的结果表明这个假设是无效的,这导致LTE和STE数据之间的NODDI神经突密度不一致。通过模拟,我们证明NODDI假设会导致参数偏差,从而妨碍使用NODDI来绘制神经突密度图。使用CODIVIDE,我们发现在白质中微观各向异性水平较高,在丘脑和壳核等结构中为中等水平,而在皮质和胶质瘤中为低水平。我们得出结论,准确绘制微观各向异性需要使用可变形状的b张量获取的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验