Ahadi Alireza, Sablok Gaurav, Hutvagner Gyorgy
Faculty of Engineering and Information Technology, School of Software, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007, Australia.
Faculty of Engineering and Information Technology, Centre of Health Technologies, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007, Australia.
Nucleic Acids Res. 2017 Apr 7;45(6):e42. doi: 10.1093/nar/gkw1185.
MicroRNAs (miRNAs) are ∼19-22 nucleotides (nt) long regulatory RNAs that regulate gene expression by recognizing and binding to complementary sequences on mRNAs. The key step in revealing the function of a miRNA, is the identification of miRNA target genes. Recent biochemical advances including PAR-CLIP and HITS-CLIP allow for improved miRNA target predictions and are widely used to validate miRNA targets. Here, we present miRTar2GO, which is a model, trained on the common rules of miRNA-target interactions, Argonaute (Ago) CLIP-Seq data and experimentally validated miRNA target interactions. miRTar2GO is designed to predict miRNA target sites using more relaxed miRNA-target binding characteristics. More importantly, miRTar2GO allows for the prediction of cell-type specific miRNA targets. We have evaluated miRTar2GO against other widely used miRNA target prediction algorithms and demonstrated that miRTar2GO produced significantly higher F1 and G scores. Target predictions, binding specifications, results of the pathway analysis and gene ontology enrichment of miRNA targets are freely available at http://www.mirtar2go.org.
微小RNA(miRNA)是长度约为19 - 22个核苷酸(nt)的调控RNA,通过识别并结合mRNA上的互补序列来调控基因表达。揭示miRNA功能的关键步骤是鉴定miRNA靶基因。包括PAR - CLIP和HITS - CLIP在内的近期生化进展使得miRNA靶标预测得到改进,并被广泛用于验证miRNA靶标。在此,我们展示了miRTar2GO,它是一个基于miRNA - 靶标相互作用的通用规则、AGO(Argonaute)CLIP - Seq数据以及经过实验验证的miRNA - 靶标相互作用进行训练的模型。miRTar2GO旨在利用更宽松的miRNA - 靶标结合特征来预测miRNA靶位点。更重要的是,miRTar2GO能够预测细胞类型特异性的miRNA靶标。我们已将miRTar2GO与其他广泛使用的miRNA靶标预测算法进行了评估比较,并证明miRTar2GO产生的F1和G分数显著更高。miRNA靶标的靶标预测、结合规范、通路分析结果以及基因本体富集情况可在http://www.mirtar2go.org免费获取。