Schuster Christina, Hardiman Orla, Bede Peter
Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland.
PLoS One. 2016 Dec 1;11(12):e0167331. doi: 10.1371/journal.pone.0167331. eCollection 2016.
Despite significant advances in quantitative neuroimaging, the diagnosis of ALS remains clinical and MRI-based biomarkers are not currently used to aid the diagnosis. The objective of this study is to develop a robust, disease-specific, multimodal classification protocol and validate its diagnostic accuracy in independent, early-stage and follow-up data sets.
147 participants (81 ALS patients and 66 healthy controls) were divided into a training sample and a validation sample. Patients in the validation sample underwent follow-up imaging longitudinally. After removing age-related variability, indices of grey and white matter integrity in ALS-specific pathognomonic brain regions were included in a cross-validated binary logistic regression model to determine the probability of individual scans indicating ALS. The following anatomical regions were assessed for diagnostic classification: average grey matter density of the left and right precentral gyrus, the average fractional anisotropy and radial diffusivity of the left and right superior corona radiata, inferior corona radiata, internal capsule, mesencephalic crus of the cerebral peduncles, pontine segment of the corticospinal tract, and the average diffusivity values of the genu, corpus and splenium of the corpus callosum.
Using a 50% probability cut-off value of suffering from ALS, the model was able to discriminate ALS patients and HC with good sensitivity (80.0%) and moderate accuracy (70.0%) in the training sample and superior sensitivity (85.7%) and accuracy (78.4%) in the independent validation sample.
This diagnostic classification study endeavours to advance ALS biomarker research towards pragmatic clinical applications by providing an approach of automated individual-data interpretation based on group-level observations.
尽管定量神经影像学取得了显著进展,但肌萎缩侧索硬化症(ALS)的诊断仍基于临床,目前尚未使用MRI生物标志物来辅助诊断。本研究的目的是开发一种强大的、针对疾病的多模态分类方案,并在独立的早期和随访数据集中验证其诊断准确性。
147名参与者(81例ALS患者和66名健康对照)被分为训练样本和验证样本。验证样本中的患者接受了纵向随访成像。在去除与年龄相关的变异性后,将ALS特异性特征性脑区的灰质和白质完整性指标纳入交叉验证的二元逻辑回归模型,以确定个体扫描显示ALS的概率。对以下解剖区域进行诊断分类评估:左右中央前回的平均灰质密度、左右放射冠上部、放射冠下部、内囊、大脑脚中脑脚、皮质脊髓束脑桥段的平均分数各向异性和径向扩散率,以及胼胝体膝部、体部和压部的平均扩散率值。
使用患ALS的概率截断值为50%,该模型在训练样本中能够以良好的敏感性(80.0%)和中等准确性(70.0%)区分ALS患者和健康对照,在独立验证样本中具有更高的敏感性(85.7%)和准确性(78.4%)。
这项诊断分类研究致力于通过提供一种基于群体水平观察的自动个体数据解释方法,推动ALS生物标志物研究向实际临床应用发展。