Suppr超能文献

不同形貌和{0001}晶面比例 ZnO 微/纳米材料的光催化 CO 还原

Photocatalytic Reduction of CO by ZnO Micro/nanomaterials with Different Morphologies and Ratios of {0001} Facets.

机构信息

College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China.

College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, Henan 473061, China.

出版信息

Sci Rep. 2016 Dec 6;6:38474. doi: 10.1038/srep38474.

Abstract

ZnO microspheres, ZnO microflowers and ZnO nanorods are successfully synthesized via a convenient solvothermal method in distilled water-ethanol mixed medium. The as-prepared ZnO micro/nanomaterials are characterized by XRD, SEM, TEM, HRTEM, XPS, BET, and UV-Vis. The morphologies and exposed facets of the ZnO micro/nanomaterials can be controlled by simply changing the volume ratio of distilled water to ethanol, and their formation mechanisms are also proposed. In addition, the photocatalytic activities of the ZnO samples are investigated towards the photoreduction of CO to CO. It is found that ZnO nanorods with high ratio of {0001} facets and large surface areas possess higher CO formation rate (3.814 μmol g h) in comparison with ZnO microspheres and ZnO microflowers (3.357 and 1.627 μmol g h, respectively). The results can not only provide an important indication about the influence of the {0001} facets on the activity of CO photoreduction over ZnO, but also demonstrate a strategy for tuning the CO photoreduction performance by tailoring the surface structures of ZnO micro/nanomaterials.

摘要

氧化锌微球、氧化锌微花和氧化锌纳米棒通过在蒸馏水-乙醇混合介质中简便的溶剂热法成功合成。所制备的 ZnO 微/纳米材料通过 XRD、SEM、TEM、HRTEM、XPS、BET 和 UV-Vis 进行了表征。通过简单改变蒸馏水与乙醇的体积比,可以控制 ZnO 微/纳米材料的形貌和暴露晶面,同时提出了它们的形成机制。此外,还研究了 ZnO 样品对 CO 光还原为 CO 的光催化活性。结果表明,具有高比例{0001}晶面和较大比表面积的 ZnO 纳米棒具有较高的 CO 生成速率(3.814 μmol g h),而 ZnO 微球和 ZnO 微花的 CO 生成速率分别为 3.357 和 1.627 μmol g h。该结果不仅为{0001}晶面对 ZnO 上 CO 光还原活性的影响提供了重要指示,还展示了通过调整 ZnO 微/纳米材料的表面结构来调节 CO 光还原性能的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea85/5138834/82b87334128f/srep38474-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验