Department of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
Department of Electronics and Telecommunications, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
Nat Commun. 2016 Dec 7;7:13745. doi: 10.1038/ncomms13745.
Hexagonal manganites, h-RMnO (R=Sc, Y, Ho-Lu), have been intensively studied for their multiferroic properties, magnetoelectric coupling, topological defects and electrically conducting domain walls. Although point defects strongly affect the conductivity of transition metal oxides, the defect chemistry of h-RMnO has received little attention. We use a combination of experiments and first principles electronic structure calculations to elucidate the effect of interstitial oxygen anions, O, on the electrical and structural properties of h-YMnO. Enthalpy stabilized interstitial oxygen anions are shown to be the main source of p-type electronic conductivity, without reducing the spontaneous ferroelectric polarization. A low energy barrier interstitialcy mechanism is inferred from Density Functional Theory calculations to be the microscopic migration path of O. Since the O content governs the concentration of charge carrier holes, controlling the thermal and atmospheric history provides a simple and fully reversible way of tuning the electrical properties of h-RMnO.
六方锰氧化物 h-RMnO(R=Sc、Y、Ho-Lu)因其多铁性能、磁电耦合、拓扑缺陷和导电畴壁而受到广泛研究。尽管点缺陷强烈影响过渡金属氧化物的电导率,但 h-RMnO 的缺陷化学却很少受到关注。我们采用实验和第一性原理电子结构计算相结合的方法,阐明了间隙氧阴离子 O 对 h-YMnO 的电学和结构性质的影响。焓稳定的间隙氧阴离子被证明是 p 型电子导电性的主要来源,而不会降低自发铁电极化。从密度泛函理论计算推断出,低能垒间隙机制是 O 微观迁移路径。由于 O 的含量决定了载流子空穴的浓度,因此控制热历史和大气历史提供了一种简单且完全可逆的方法来调节 h-RMnO 的电学性质。