Suppr超能文献

同时刺激景天庚酮糖1,7-二磷酸酶、果糖1,6-二磷酸醛缩酶和光呼吸甘氨酸脱羧酶-H蛋白可提高拟南芥的CO2同化、营养生物量和种子产量。

Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO assimilation, vegetative biomass and seed yield in Arabidopsis.

作者信息

Simkin Andrew J, Lopez-Calcagno Patricia E, Davey Philip A, Headland Lauren R, Lawson Tracy, Timm Stefan, Bauwe Hermann, Raines Christine A

机构信息

School of Biological Sciences, University of Essex, Colchester, UK.

Plant Physiology Department, University of Rostock, Rostock, Germany.

出版信息

Plant Biotechnol J. 2017 Jul;15(7):805-816. doi: 10.1111/pbi.12676. Epub 2017 Mar 21.

Abstract

In this article, we have altered the levels of three different enzymes involved in the Calvin-Benson cycle and photorespiratory pathway. We have generated transgenic Arabidopsis plants with altered combinations of sedoheptulose 1,7-bisphosphatase (SBPase), fructose 1,6-bisphophate aldolase (FBPA) and the glycine decarboxylase-H protein (GDC-H) gene identified as targets to improve photosynthesis based on previous studies. Here, we show that increasing the levels of the three corresponding proteins, either independently or in combination, significantly increases the quantum efficiency of PSII. Furthermore, photosynthetic measurements demonstrated an increase in the maximum efficiency of CO fixation in lines over-expressing SBPase and FBPA. Moreover, the co-expression of GDC-H with SBPase and FBPA resulted in a cumulative positive impact on leaf area and biomass. Finally, further analysis of transgenic lines revealed a cumulative increase of seed yield in SFH lines grown in high light. These results demonstrate the potential of multigene stacking for improving the productivity of food and energy crops.

摘要

在本文中,我们改变了卡尔文-本森循环和光呼吸途径中三种不同酶的水平。基于之前的研究,我们已培育出转基因拟南芥植株,其景天庚酮糖1,7-二磷酸酶(SBPase)、果糖1,6-二磷酸醛缩酶(FBPA)和甘氨酸脱羧酶-H蛋白(GDC-H)基因的组合发生了改变,这些基因被确定为提高光合作用的靶点。在此,我们表明,单独或组合增加这三种相应蛋白质的水平,可显著提高PSII的量子效率。此外,光合测量结果表明,过表达SBPase和FBPA的株系中CO固定的最大效率有所提高。此外,GDC-H与SBPase和FBPA的共表达对叶面积和生物量产生了累积的积极影响。最后,对转基因株系的进一步分析表明,在高光条件下生长的SFH株系种子产量呈累积增加。这些结果证明了多基因叠加在提高粮食和能源作物生产力方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04ce/11389040/8c55abe6c528/PBI-15-805-g002.jpg

相似文献

2
Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco.
J Exp Bot. 2015 Jul;66(13):4075-90. doi: 10.1093/jxb/erv204. Epub 2015 May 8.
4
Increased sedoheptulose-1,7-bisphosphatase content in Setaria viridis does not affect C4 photosynthesis.
Plant Physiol. 2023 Feb 12;191(2):885-893. doi: 10.1093/plphys/kiac484.
5
Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants.
J Exp Bot. 2012 May;63(8):3001-9. doi: 10.1093/jxb/ers004. Epub 2012 Feb 8.
7
A novel variant of the Calvin-Benson cycle bypassing fructose bisphosphate.
Sci Rep. 2022 Mar 16;12(1):3984. doi: 10.1038/s41598-022-07836-7.
8
Glycine decarboxylase in C3, C4 and C3-C4 intermediate species.
Curr Opin Plant Biol. 2016 Jun;31:29-35. doi: 10.1016/j.pbi.2016.03.011. Epub 2016 Mar 31.
10
Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.
Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730). doi: 10.1098/rstb.2016.0384.

引用本文的文献

1
The heat is on: scaling improvements in photosynthetic thermal tolerance from the leaf to canopy to predict crop yields in a changing climate.
Philos Trans R Soc Lond B Biol Sci. 2025 May 29;380(1927):20240235. doi: 10.1098/rstb.2024.0235.
2
Guard cell-specific glycine decarboxylase manipulation affects Arabidopsis photosynthesis, growth and stomatal behavior.
New Phytol. 2025 Jun;246(5):2102-2117. doi: 10.1111/nph.70124. Epub 2025 Apr 11.
4
Improved photorespiration has a major impact on the root metabolome of Arabidopsis.
Physiol Plant. 2025 Mar-Apr;177(2):e70142. doi: 10.1111/ppl.70142.
6
Phosphate fertilizers increase CO assimilation and yield of soybean in a shaded environment.
Photosynthetica. 2022 Jan 3;60(2):157-167. doi: 10.32615/ps.2021.063. eCollection 2022.
7
Photosynthesis: Genetic Strategies Adopted to Gain Higher Efficiency.
Int J Mol Sci. 2024 Aug 16;25(16):8933. doi: 10.3390/ijms25168933.
8
How photosynthetic performance impacts agricultural productivity in hybrid cotton offspring.
Heliyon. 2024 Jul 14;10(14):e34603. doi: 10.1016/j.heliyon.2024.e34603. eCollection 2024 Jul 30.
9
Perspectives on improving photosynthesis to increase crop yield.
Plant Cell. 2024 Oct 3;36(10):3944-3973. doi: 10.1093/plcell/koae132.
10
Characterization of genes in potato ( L.) and expression patterns in response to light spectrum and abiotic stress.
Front Genet. 2024 Apr 12;15:1364944. doi: 10.3389/fgene.2024.1364944. eCollection 2024.

本文引用的文献

2
Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency.
Plant Physiol. 2016 Oct;172(2):707-717. doi: 10.1104/pp.16.00750. Epub 2016 Jun 24.
3
Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration.
Photosynth Res. 2016 Jul;129(1):93-103. doi: 10.1007/s11120-016-0277-3. Epub 2016 Jun 1.
4
Will an algal CO2-concentrating mechanism work in higher plants?
Curr Opin Plant Biol. 2016 Jun;31:181-8. doi: 10.1016/j.pbi.2016.04.009. Epub 2016 May 15.
5
Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity.
Curr Opin Plant Biol. 2016 Jun;31:135-42. doi: 10.1016/j.pbi.2016.04.002. Epub 2016 Apr 27.
7
The regulatory interplay between photorespiration and photosynthesis.
J Exp Bot. 2016 May;67(10):2923-9. doi: 10.1093/jxb/erw083. Epub 2016 Mar 11.
8
9
Targeted Knockdown of GDCH in Rice Leads to a Photorespiratory-Deficient Phenotype Useful as a Building Block for C4 Rice.
Plant Cell Physiol. 2016 May;57(5):919-32. doi: 10.1093/pcp/pcw033. Epub 2016 Feb 21.
10
The Costs of Photorespiration to Food Production Now and in the Future.
Annu Rev Plant Biol. 2016 Apr 29;67:107-29. doi: 10.1146/annurev-arplant-043015-111709. Epub 2016 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验