Pickering Andrew, Zhao Hai-Qiong, Zhu Zuo-Nong
Área de Matemática Aplicada, ESCET , Universidad Rey Juan Carlos , C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain.
Department of Applied Mathematics , Shanghai University of International Business and Economics , 1900 Wenxiang Road, Shanghai 201620, People's Republic of China.
Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160628. doi: 10.1098/rspa.2016.0628.
In this paper, we propose a new semidiscrete Hirota equation which yields the Hirota equation in the continuum limit. We focus on the topic of how the discrete space step affects the simulation for the soliton solution to the Hirota equation. The Darboux transformation and explicit solution for the semidiscrete Hirota equation are constructed. We show that the continuum limit for the semidiscrete Hirota equation, including the Lax pair, the Darboux transformation and the explicit solution, yields the corresponding results for the Hirota equation as [Formula: see text].
在本文中,我们提出了一个新的半离散广田方程,该方程在连续极限下可得到广田方程。我们关注离散空间步长如何影响广田方程孤子解的模拟这一主题。构建了半离散广田方程的达布变换和显式解。我们表明,半离散广田方程的连续极限,包括拉克斯对、达布变换和显式解,当[公式:见原文]时可得到广田方程的相应结果。