Suppr超能文献

血压盐敏感性机制:数学建模的新见解

Mechanisms of blood pressure salt sensitivity: new insights from mathematical modeling.

作者信息

Clemmer John S, Pruett W Andrew, Coleman Thomas G, Hall John E, Hester Robert L

机构信息

Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, Mississippi

Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, Mississippi.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2017 Apr 1;312(4):R451-R466. doi: 10.1152/ajpregu.00353.2016. Epub 2016 Dec 14.

Abstract

Mathematical modeling is an important tool for understanding quantitative relationships among components of complex physiological systems and for testing competing hypotheses. We used HumMod, a large physiological model, to test hypotheses of blood pressure (BP) salt sensitivity. Systemic hemodynamics, renal, and neurohormonal responses to chronic changes in salt intake were examined during normal renal function, fixed low or high plasma angiotensin II (ANG II) levels, bilateral renal artery stenosis, increased renal sympathetic nerve activity (RSNA), and decreased nephron numbers. Simulations were run for 4 wk at salt intakes ranging from 30 to 1,000 mmol/day. Reducing functional kidney mass or fixing ANG II increased salt sensitivity. Salt sensitivity, associated with inability of ANG II to respond to changes in salt intake, occurred with smaller changes in renal blood flow but greater changes in glomerular filtration rate, renal sodium reabsorption, and total peripheral resistance (TPR). However, clamping TPR at normal or high levels had no major effect on salt sensitivity. There were no clear relationships between BP salt sensitivity and renal vascular resistance or extracellular fluid volume. Our robust mathematical model of cardiovascular, renal, endocrine, and sympathetic nervous system physiology supports the hypothesis that specific types of kidney dysfunction, associated with impaired regulation of ANG II or increased tubular sodium reabsorption, contribute to BP salt sensitivity. However, increased preglomerular resistance, increased RSNA, or inability to decrease TPR does not appear to influence salt sensitivity. This model provides a platform for testing competing concepts of long-term BP control during changes in salt intake.

摘要

数学建模是理解复杂生理系统各组成部分之间定量关系以及检验相互竞争假设的重要工具。我们使用大型生理模型HumMod来检验血压(BP)盐敏感性的假设。在正常肾功能、固定的低或高血浆血管紧张素II(ANG II)水平、双侧肾动脉狭窄、肾交感神经活动(RSNA)增加以及肾单位数量减少的情况下,研究了全身血流动力学、肾脏和神经激素对盐摄入量慢性变化的反应。在盐摄入量为30至1000 mmol/天的范围内进行了4周的模拟。减少功能性肾质量或固定ANG II会增加盐敏感性。盐敏感性与ANG II无法对盐摄入量变化做出反应有关,此时肾血流量变化较小,但肾小球滤过率、肾钠重吸收和总外周阻力(TPR)变化较大。然而,将TPR钳制在正常或高水平对盐敏感性没有重大影响。BP盐敏感性与肾血管阻力或细胞外液量之间没有明确的关系。我们强大的心血管、肾脏、内分泌和交感神经系统生理学数学模型支持以下假设:与ANG II调节受损或肾小管钠重吸收增加相关的特定类型的肾功能障碍会导致BP盐敏感性。然而,肾小球前阻力增加、RSNA增加或无法降低TPR似乎不会影响盐敏感性。该模型为检验盐摄入量变化期间长期血压控制的相互竞争概念提供了一个平台。

相似文献

1
Mechanisms of blood pressure salt sensitivity: new insights from mathematical modeling.
Am J Physiol Regul Integr Comp Physiol. 2017 Apr 1;312(4):R451-R466. doi: 10.1152/ajpregu.00353.2016. Epub 2016 Dec 14.
2
High dietary salt and angiotensin II chronically increase renal sympathetic nerve activity: a direct telemetric study.
Hypertension. 2012 Mar;59(3):614-20. doi: 10.1161/HYPERTENSIONAHA.111.180885. Epub 2012 Jan 23.
3
Preeminent role of the cardiorenal axis in the antihypertensive response to an arteriovenous fistula: an in silico analysis.
Am J Physiol Heart Circ Physiol. 2019 Nov 1;317(5):H1002-H1012. doi: 10.1152/ajpheart.00354.2019. Epub 2019 Aug 30.
4
Differential sympathetic and angiotensinergic responses in rats submitted to low- or high-salt diet.
Regul Pept. 2007 Apr 5;140(1-2):5-11. doi: 10.1016/j.regpep.2006.11.007. Epub 2006 Dec 28.
5
Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension.
Adv Exp Med Biol. 2017;956:61-84. doi: 10.1007/5584_2016_147.
6
7
Speculations on salt and the genesis of arterial hypertension.
Kidney Int. 2017 Jun;91(6):1324-1335. doi: 10.1016/j.kint.2017.02.034.
8
Testing Computer Models Predicting Human Responses to a High-Salt Diet.
Hypertension. 2018 Dec;72(6):1407-1416. doi: 10.1161/HYPERTENSIONAHA.118.11552.
9
The blood pressure-salt sensitivity paradigm: pathophysiologically sound yet of no practical value.
Nephrol Dial Transplant. 2016 Sep;31(9):1386-91. doi: 10.1093/ndt/gfw295. Epub 2016 Aug 11.

引用本文的文献

1
Aging and sex differences in salt sensitivity of blood pressure.
Clin Sci (Lond). 2025 Jan 28;139(2):199-212. doi: 10.1042/CS20240788.
2
Effect of low sodium and high potassium diet on lowering blood pressure and cardiovascular events.
Clin Hypertens. 2024 Jan 2;30(1):2. doi: 10.1186/s40885-023-00259-0.
4
Modeling the physiological roles of the heart and kidney in heart failure with preserved ejection fraction during baroreflex activation therapy.
Am J Physiol Heart Circ Physiol. 2022 Sep 1;323(3):H597-H607. doi: 10.1152/ajpheart.00329.2022. Epub 2022 Aug 19.
5
Reducing Sodium Consumption in Mexico: A Strategy to Decrease the Morbidity and Mortality of Cardiovascular Diseases.
Front Public Health. 2022 Mar 22;10:857818. doi: 10.3389/fpubh.2022.857818. eCollection 2022.
6
In silico trial of baroreflex activation therapy for the treatment of obesity-induced hypertension.
PLoS One. 2021 Nov 18;16(11):e0259917. doi: 10.1371/journal.pone.0259917. eCollection 2021.
7
Impact of sex and pathophysiology on optimal drug choice in hypertensive rats: quantitative insights for precision medicine.
iScience. 2021 Mar 20;24(4):102341. doi: 10.1016/j.isci.2021.102341. eCollection 2021 Apr 23.
8
Cardiac and renal function interactions in heart failure with reduced ejection fraction: A mathematical modeling analysis.
PLoS Comput Biol. 2020 Aug 17;16(8):e1008074. doi: 10.1371/journal.pcbi.1008074. eCollection 2020 Aug.
9
Sensing of tubular flow and renal electrolyte transport.
Nat Rev Nephrol. 2020 Jun;16(6):337-351. doi: 10.1038/s41581-020-0259-8. Epub 2020 Mar 3.
10
Preeminent role of the cardiorenal axis in the antihypertensive response to an arteriovenous fistula: an in silico analysis.
Am J Physiol Heart Circ Physiol. 2019 Nov 1;317(5):H1002-H1012. doi: 10.1152/ajpheart.00354.2019. Epub 2019 Aug 30.

本文引用的文献

1
Renal Dysfunction, Rather Than Nonrenal Vascular Dysfunction, Mediates Salt-Induced Hypertension.
Circulation. 2016 Mar 1;133(9):894-906. doi: 10.1161/CIRCULATIONAHA.115.018526.
3
A mathematical model of salt-sensitive hypertension: the neurogenic hypothesis.
J Physiol. 2015 Jul 15;593(14):3065-75. doi: 10.1113/jphysiol.2014.278317. Epub 2014 Oct 27.
4
Renal autoregulation in health and disease.
Physiol Rev. 2015 Apr;95(2):405-511. doi: 10.1152/physrev.00042.2012.
5
Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms.
Circ Res. 2015 Mar 13;116(6):991-1006. doi: 10.1161/CIRCRESAHA.116.305697.
6
Salt and obesity revisited.
J Hypertens. 2013 Nov;31(11):2130-2. doi: 10.1097/HJH.0b013e328365d09d.
7
11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action.
Physiol Rev. 2013 Jul;93(3):1139-206. doi: 10.1152/physrev.00020.2012.
8
Hypertension: physiology and pathophysiology.
Compr Physiol. 2012 Oct;2(4):2393-442. doi: 10.1002/cphy.c110058.
9
A new conceptual paradigm for the haemodynamics of salt-sensitive hypertension: a mathematical modelling approach.
J Physiol. 2012 Dec 1;590(23):5975-92. doi: 10.1113/jphysiol.2012.228619. Epub 2012 Aug 13.
10
Theoretical analysis of the effect of positioning on hemodynamic stability during pregnancy.
Acad Emerg Med. 2011 Oct;18(10):1094-8. doi: 10.1111/j.1553-2712.2011.01166.x. Epub 2011 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验