Suppr超能文献

带有吸引腔的即时量子力学/分子力学对接

On-the-Fly QM/MM Docking with Attracting Cavities.

作者信息

Chaskar Prasad, Zoete Vincent, Röhrig Ute F

机构信息

SIB Swiss Institute of Bioinformatics , Molecular Modeling Group, CH-1015 Lausanne, Switzerland.

出版信息

J Chem Inf Model. 2017 Jan 23;57(1):73-84. doi: 10.1021/acs.jcim.6b00406. Epub 2016 Dec 16.

Abstract

We developed a hybrid quantum mechanical/molecular mechanical (QM/MM) on-the-fly docking algorithm to address the challenges of treating polarization and selected metal interactions in docking. The algorithm is based on our classical docking algorithm Attracting Cavities and relies on the semiempirical self-consistent charge density functional tight-binding (SCC-DFTB) method and the CHARMM force field. We benchmarked the performance of this approach on three very diverse data sets: (1) the Astex Diverse set of 85 common noncovalent drug/target complexes formed both by hydrophobic and electrostatic interactions; (2) a zinc metalloprotein data set of 281 complexes, where polarization is strong and ligand/protein interactions are dominated by electrostatic interactions; and (3) a heme protein data set of 72 complexes, where ligand/protein interactions are dominated by covalent ligand/iron binding. Redocking performance of the on-the-fly QM/MM docking algorithm was compared to the performance of classical Attracting Cavities, AutoDock, AutoDock Vina, and GOLD. The results demonstrate that the QM/MM code preserves the high accuracy of most classical scores on the Astex Diverse set, while it yields significant improvements on both sets of metalloproteins at moderate computational cost.

摘要

我们开发了一种混合量子力学/分子力学(QM/MM)实时对接算法,以应对对接过程中处理极化和特定金属相互作用的挑战。该算法基于我们的经典对接算法“吸引腔”,并依赖于半经验自洽电荷密度泛函紧束缚(SCC-DFTB)方法和CHARMM力场。我们在三个非常不同的数据集上对该方法的性能进行了基准测试:(1)由疏水和静电相互作用形成的85种常见非共价药物/靶点复合物的阿斯利康多样化数据集;(2)281种复合物的锌金属蛋白数据集,其中极化作用很强,配体/蛋白质相互作用以静电相互作用为主;(3)72种复合物的血红素蛋白数据集,其中配体/蛋白质相互作用以共价配体/铁结合为主。将实时QM/MM对接算法的重新对接性能与经典的“吸引腔”、AutoDock、AutoDock Vina和GOLD的性能进行了比较。结果表明,QM/MM代码在阿斯利康多样化数据集上保持了大多数经典评分的高精度,同时在两组金属蛋白上以适度的计算成本取得了显著改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验