Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35249, USA.
Sci Rep. 2016 Dec 22;6:39223. doi: 10.1038/srep39223.
Laser capture microdissection (LCM)-enabled region-specific tissue analyses are critical to better understand complex multicellular processes. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, impacting measurement robustness, quantification and throughput. Here, we coupled LCM with a proteomics workflow that provides fully automated analysis of proteomes from microdissected tissues. Benchmarking against the current state-of-the-art in ultrasensitive global proteomics (FASP workflow), our approach demonstrated significant improvements in quantification (~2-fold lower variance) and throughput (>5 times faster). Using our approach we for the first time characterized, to a depth of >3,400 proteins, the ontogeny of protein changes during normal lung development in microdissected alveolar tissue containing only 4,000 cells. Our analysis revealed seven defined modules of coordinated transcription factor-signaling molecule expression patterns, suggesting a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes.
激光捕获显微切割(LCM)实现的特定区域组织分析对于更好地理解复杂的多细胞过程至关重要。然而,目前的蛋白质组学工作流程需要进行多个手动样本制备步骤,并且受到 LCM 产生的微观质量限制样本的挑战,这影响了测量的稳健性、定量和通量。在这里,我们将 LCM 与一种蛋白质组学工作流程相结合,该工作流程可对微切割组织中的蛋白质组进行全自动分析。与超灵敏全局蛋白质组学(FASP 工作流程)的最新技术水平进行基准测试,我们的方法在定量(~2 倍更低的方差)和通量(>5 倍更快)方面都有显著提高。使用我们的方法,我们首次对含有 4000 个细胞的微切割肺泡组织中正常肺发育过程中的蛋白质变化进行了深度大于 3400 种蛋白质的特征描述。我们的分析揭示了七个协调的转录因子-信号分子表达模式的定义模块,表明一个复杂的时间调控控制网络指导正常肺发育,表观遗传调控精细调节产前发育过程。