Zheng Qi, Peng Limin
Department of Biostatistics and Bioinformatics, Emory University Atlanta GA, 30322, USA.
Commun Stat Theory Methods. 2017;46(3):1031-1049. doi: 10.1080/03610926.2015.1010009. Epub 2016 Mar 16.
Quantile regression provides a flexible platform for evaluating covariate effects on different segments of the conditional distribution of response. As the effects of covariates may change with quantile level, contemporaneously examining a spectrum of quantiles is expected to have a better capacity to identify variables with either partial or full effects on the response distribution, as compared to focusing on a single quantile. Under this motivation, we study a general adaptively weighted LASSO penalization strategy in the quantile regression setting, where a continuum of quantile index is considered and coefficients are allowed to vary with quantile index. We establish the oracle properties of the resulting estimator of coefficient function. Furthermore, we formally investigate a BIC-type uniform tuning parameter selector and show that it can ensure consistent model selection. Our numerical studies confirm the theoretical findings and illustrate an application of the new variable selection procedure.
分位数回归为评估协变量对响应条件分布不同部分的影响提供了一个灵活的平台。由于协变量的影响可能随分位数水平而变化,与关注单个分位数相比,同时检查一系列分位数有望具有更强的能力来识别对响应分布有部分或全部影响的变量。基于此动机,我们在分位数回归设置中研究一种通用的自适应加权LASSO惩罚策略,其中考虑了连续的分位数索引,并且允许系数随分位数索引变化。我们建立了所得系数函数估计量的神谕性质。此外,我们正式研究了一种BIC型统一调优参数选择器,并表明它可以确保一致的模型选择。我们的数值研究证实了理论结果,并说明了新变量选择程序的一个应用。