Suppr超能文献

基于贝叶斯信息准则(BIC)调优参数选择的变系数分位数回归的一致模型识别

Consistent model identification of varying coefficient quantile regression with BIC tuning parameter selection.

作者信息

Zheng Qi, Peng Limin

机构信息

Department of Biostatistics and Bioinformatics, Emory University Atlanta GA, 30322, USA.

出版信息

Commun Stat Theory Methods. 2017;46(3):1031-1049. doi: 10.1080/03610926.2015.1010009. Epub 2016 Mar 16.

Abstract

Quantile regression provides a flexible platform for evaluating covariate effects on different segments of the conditional distribution of response. As the effects of covariates may change with quantile level, contemporaneously examining a spectrum of quantiles is expected to have a better capacity to identify variables with either partial or full effects on the response distribution, as compared to focusing on a single quantile. Under this motivation, we study a general adaptively weighted LASSO penalization strategy in the quantile regression setting, where a continuum of quantile index is considered and coefficients are allowed to vary with quantile index. We establish the oracle properties of the resulting estimator of coefficient function. Furthermore, we formally investigate a BIC-type uniform tuning parameter selector and show that it can ensure consistent model selection. Our numerical studies confirm the theoretical findings and illustrate an application of the new variable selection procedure.

摘要

分位数回归为评估协变量对响应条件分布不同部分的影响提供了一个灵活的平台。由于协变量的影响可能随分位数水平而变化,与关注单个分位数相比,同时检查一系列分位数有望具有更强的能力来识别对响应分布有部分或全部影响的变量。基于此动机,我们在分位数回归设置中研究一种通用的自适应加权LASSO惩罚策略,其中考虑了连续的分位数索引,并且允许系数随分位数索引变化。我们建立了所得系数函数估计量的神谕性质。此外,我们正式研究了一种BIC型统一调优参数选择器,并表明它可以确保一致的模型选择。我们的数值研究证实了理论结果,并说明了新变量选择程序的一个应用。

相似文献

1
Consistent model identification of varying coefficient quantile regression with BIC tuning parameter selection.
Commun Stat Theory Methods. 2017;46(3):1031-1049. doi: 10.1080/03610926.2015.1010009. Epub 2016 Mar 16.
2
Shrinkage Estimation of Varying Covariate Effects Based On Quantile Regression.
Stat Comput. 2014 Sep 1;24(5):853-869. doi: 10.1007/s11222-013-9406-4.
3
GLOBALLY ADAPTIVE QUANTILE REGRESSION WITH ULTRA-HIGH DIMENSIONAL DATA.
Ann Stat. 2015 Oct 1;43(5):2225-2258. doi: 10.1214/15-AOS1340.
4
Interquantile Shrinkage and Variable Selection in Quantile Regression.
Comput Stat Data Anal. 2014 Jan 1;69:208-219. doi: 10.1016/j.csda.2013.08.006.
5
Globally Adaptive Longitudinal Quantile Regression with High Dimensional Compositional Covariates.
Stat Sin. 2023 May;33(Spec Issue):1295-1318. doi: 10.5705/ss.202021.0006.
6
Regularized Quantile Regression and Robust Feature Screening for Single Index Models.
Stat Sin. 2016 Jan;26(1):69-95. doi: 10.5705/ss.2014.049.
7
Interquantile Shrinkage in Regression Models.
J Comput Graph Stat. 2013;22(4). doi: 10.1080/10618600.2012.707454.
8
Weighted quantile regression for analyzing health care cost data with missing covariates.
Stat Med. 2013 Dec 10;32(28):4967-79. doi: 10.1002/sim.5883. Epub 2013 Jul 9.
9
VARIABLE SELECTION FOR HIGH DIMENSIONAL MULTIVARIATE OUTCOMES.
Stat Sin. 2014 Oct;24(4):1633-1654. doi: 10.5705/ss.2013.019.
10
HIGH DIMENSIONAL CENSORED QUANTILE REGRESSION.
Ann Stat. 2018 Feb;46(1):308-343. doi: 10.1214/17-AOS1551. Epub 2018 Feb 22.

引用本文的文献

1
Tensor response quantile regression with neuroimaging data.
Biometrics. 2023 Sep;79(3):1947-1958. doi: 10.1111/biom.13809. Epub 2022 Dec 27.
2
DGQR estimation for interval censored quantile regression with varying-coefficient models.
PLoS One. 2020 Nov 10;15(11):e0240046. doi: 10.1371/journal.pone.0240046. eCollection 2020.

本文引用的文献

1
Shrinkage Estimation of Varying Covariate Effects Based On Quantile Regression.
Stat Comput. 2014 Sep 1;24(5):853-869. doi: 10.1007/s11222-013-9406-4.
2
Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension.
J Am Stat Assoc. 2012 Mar 1;107(497):214-222. doi: 10.1080/01621459.2012.656014. Epub 2012 Jun 11.
4
Tuning parameter selectors for the smoothly clipped absolute deviation method.
Biometrika. 2007 Aug 1;94(3):553-568. doi: 10.1093/biomet/asm053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验