Suppr超能文献

用于弥合光电子能谱中压力差距的最新方法。

Recent approaches for bridging the pressure gap in photoelectron microspectroscopy.

作者信息

Kolmakov Andrei, Gregoratti Luca, Kiskinova Maya, Günther Sebastian

机构信息

Center for Nanoscale Science and Technology, NIST Gaithersburg MD 20899 USA.

Elettra - Sincrotrone Trieste SCpA, Area Science Park, 34012 Trieste, Italy.

出版信息

Catal Letters. 2016 Mar;59(5):448-468. doi: 10.1007/s11244-015-0519-1. Epub 2016 Jan 29.

Abstract

Ambient-pressure photoelectron spectroscopy (APPES) and microscopy are at the frontier of modern chemical analysis at liquid-gas, solid-liquid and solid-gas interfaces, bridging science and engineering of functional materials. Complementing the current state-of-the art of the instruments, we survey in this short review several alternative APPES approaches, developed recently in the scanning photoelectron microscope (SPEM) at the Elettra laboratory. In particular, we report on experimental setups for dynamic near-ambient pressure environment, using pulsed-gas injection in the vicinity of samples or reaction cells with very small apertures, allowing for experiments without introducing additional differential pumping stages. The major part of the review is dedicated to the construction and performance of novel environmental cells using ultrathin electron-transparent but molecularly impermeable membranes to isolate the gas or liquid ambient from the electron detector operating in ultra-high vacuum (UHV). We demonstrate that two dimensional materials, such as graphene and derivatives, are mechanically robust to withstand atmospheric - UHV pressure differences and are sufficiently transparent for the photoelectrons emitted from samples immersed in the liquid or gaseous media. There are many unique opportunities for APPES using X-rays over a wide energy range. We show representative results that illustrate the potential of these 'ambient-pressure' approaches. Combined with the ca 100 nm lateral resolution of SPEM, they can overcome the pressure gap challenges and address the evolution of chemical composition and electronic structure at surface and interfaces under realistic operation conditions with unprecedented lateral and spectral resolution.

摘要

环境压力光电子能谱(APPES)和显微镜技术处于液-气、固-液和固-气界面现代化学分析的前沿,连接着功能材料的科学与工程。作为对当前仪器技术水平的补充,在本简短综述中,我们概述了最近在埃莱特拉实验室的扫描光电子显微镜(SPEM)中开发的几种替代APPES方法。特别是,我们报告了动态近环境压力环境的实验装置,该装置在样品或具有非常小孔径的反应池附近使用脉冲气体注入,无需引入额外的差动抽气阶段即可进行实验。综述的主要部分致力于使用超薄电子透明但分子不可渗透的膜来构建新型环境池,以将气体或液体环境与在超高真空(UHV)中运行的电子探测器隔离开来。我们证明,二维材料,如石墨烯及其衍生物,在机械上具有足够的强度以承受大气-UHV压力差,并且对于浸入液体或气体介质中的样品发射的光电子具有足够的透明度。在很宽的能量范围内使用X射线进行APPES有许多独特的机会。我们展示了具有代表性结果,说明了这些“环境压力”方法的潜力。结合SPEM约100nm的横向分辨率,它们可以克服压力差挑战,并以前所未有的横向和光谱分辨率解决实际操作条件下表面和界面处化学成分和电子结构的演变问题。

相似文献

1
Recent approaches for bridging the pressure gap in photoelectron microspectroscopy.
Catal Letters. 2016 Mar;59(5):448-468. doi: 10.1007/s11244-015-0519-1. Epub 2016 Jan 29.
2
Photoelectron spectroscopy of wet and gaseous samples through graphene membranes.
Nanoscale. 2014 Nov 6;6(23):14394-403. doi: 10.1039/c4nr03561e.
3
Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.
Acc Chem Res. 2015 Nov 17;48(11):2976-83. doi: 10.1021/acs.accounts.5b00275. Epub 2015 Aug 25.
4
Development of New Methods of Studying Catalyst and Materials Surfaces with Ambient Pressure Photoelectron Spectroscopy.
Acc Chem Res. 2025 Jan 7;58(1):11-23. doi: 10.1021/acs.accounts.4c00508. Epub 2024 Dec 23.
7
Closing the pressure gap in x-ray photoelectron spectroscopy by membrane hydrogenation.
Rev Sci Instrum. 2015 May;86(5):053104. doi: 10.1063/1.4921353.
8
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.
10
Ambient Pressure Hard X-ray Photoelectron Spectroscopy for Functional Material Systems as Fuel Cells under Working Conditions.
Acc Chem Res. 2018 Mar 20;51(3):719-727. doi: 10.1021/acs.accounts.7b00563. Epub 2018 Mar 6.

引用本文的文献

1
Development of hard X-ray photoelectron spectroscopy in liquid cells using optimized microfabricated silicon nitride membranes.
J Synchrotron Radiat. 2024 Nov 1;31(Pt 6):1505-1513. doi: 10.1107/S1600577524008865. Epub 2024 Oct 15.
2
Design and performance of a new setup for spatially resolved transmission X-ray photoelectron spectroscopy at the Swiss Light Source.
J Synchrotron Radiat. 2019 May 1;26(Pt 3):785-792. doi: 10.1107/S1600577519002984. Epub 2019 Apr 2.
3
Enabling Photoemission Electron Microscopy in Liquids via Graphene-Capped Microchannel Arrays.
Nano Lett. 2017 Feb 8;17(2):1034-1041. doi: 10.1021/acs.nanolett.6b04460. Epub 2017 Jan 30.

本文引用的文献

1
Photoelectron spectroscopy of wet and gaseous samples through graphene membranes.
Nanoscale. 2014 Nov 6;6(23):14394-403. doi: 10.1039/c4nr03561e.
2
A versatile photoelectron spectrometer for pressures up to 30 mbar.
Rev Sci Instrum. 2014 Jul;85(7):075119. doi: 10.1063/1.4890665.
3
Precise and ultrafast molecular sieving through graphene oxide membranes.
Science. 2014 Feb 14;343(6172):752-4. doi: 10.1126/science.1245711.
4
Bubble and pattern formation in liquid induced by an electron beam.
Nano Lett. 2014 Jan 8;14(1):359-64. doi: 10.1021/nl404169a. Epub 2013 Dec 9.
5
Selective gas transport through few-layered graphene and graphene oxide membranes.
Science. 2013 Oct 4;342(6154):91-5. doi: 10.1126/science.1236098.
7
Turning off hydrogen to realize seeded growth of subcentimeter single-crystal graphene grains on copper.
ACS Nano. 2013 Oct 22;7(10):9480-8. doi: 10.1021/nn404393b. Epub 2013 Sep 24.
8
Observing graphene grow: catalyst-graphene interactions during scalable graphene growth on polycrystalline copper.
Nano Lett. 2013 Oct 9;13(10):4769-78. doi: 10.1021/nl4023572. Epub 2013 Sep 24.
9
Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy.
Chem Soc Rev. 2013 Jul 7;42(13):5833-57. doi: 10.1039/c3cs60057b.
10
Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases.
Nanotechnology. 2012 Dec 21;23(50):505704. doi: 10.1088/0957-4484/23/50/505704. Epub 2012 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验