Kolmakov Andrei, Gregoratti Luca, Kiskinova Maya, Günther Sebastian
Center for Nanoscale Science and Technology, NIST Gaithersburg MD 20899 USA.
Elettra - Sincrotrone Trieste SCpA, Area Science Park, 34012 Trieste, Italy.
Catal Letters. 2016 Mar;59(5):448-468. doi: 10.1007/s11244-015-0519-1. Epub 2016 Jan 29.
Ambient-pressure photoelectron spectroscopy (APPES) and microscopy are at the frontier of modern chemical analysis at liquid-gas, solid-liquid and solid-gas interfaces, bridging science and engineering of functional materials. Complementing the current state-of-the art of the instruments, we survey in this short review several alternative APPES approaches, developed recently in the scanning photoelectron microscope (SPEM) at the Elettra laboratory. In particular, we report on experimental setups for dynamic near-ambient pressure environment, using pulsed-gas injection in the vicinity of samples or reaction cells with very small apertures, allowing for experiments without introducing additional differential pumping stages. The major part of the review is dedicated to the construction and performance of novel environmental cells using ultrathin electron-transparent but molecularly impermeable membranes to isolate the gas or liquid ambient from the electron detector operating in ultra-high vacuum (UHV). We demonstrate that two dimensional materials, such as graphene and derivatives, are mechanically robust to withstand atmospheric - UHV pressure differences and are sufficiently transparent for the photoelectrons emitted from samples immersed in the liquid or gaseous media. There are many unique opportunities for APPES using X-rays over a wide energy range. We show representative results that illustrate the potential of these 'ambient-pressure' approaches. Combined with the ca 100 nm lateral resolution of SPEM, they can overcome the pressure gap challenges and address the evolution of chemical composition and electronic structure at surface and interfaces under realistic operation conditions with unprecedented lateral and spectral resolution.
环境压力光电子能谱(APPES)和显微镜技术处于液-气、固-液和固-气界面现代化学分析的前沿,连接着功能材料的科学与工程。作为对当前仪器技术水平的补充,在本简短综述中,我们概述了最近在埃莱特拉实验室的扫描光电子显微镜(SPEM)中开发的几种替代APPES方法。特别是,我们报告了动态近环境压力环境的实验装置,该装置在样品或具有非常小孔径的反应池附近使用脉冲气体注入,无需引入额外的差动抽气阶段即可进行实验。综述的主要部分致力于使用超薄电子透明但分子不可渗透的膜来构建新型环境池,以将气体或液体环境与在超高真空(UHV)中运行的电子探测器隔离开来。我们证明,二维材料,如石墨烯及其衍生物,在机械上具有足够的强度以承受大气-UHV压力差,并且对于浸入液体或气体介质中的样品发射的光电子具有足够的透明度。在很宽的能量范围内使用X射线进行APPES有许多独特的机会。我们展示了具有代表性结果,说明了这些“环境压力”方法的潜力。结合SPEM约100nm的横向分辨率,它们可以克服压力差挑战,并以前所未有的横向和光谱分辨率解决实际操作条件下表面和界面处化学成分和电子结构的演变问题。