Kikuchi Masao, Wickman Larysa, Rabah Raja, Wiggins Roger C
Department of Internal Medicine, Nephrology Division, University of Michigan, 1570B MSRBII, 1150 W Medical Center Drive, Ann Arbor, MI, 48109-0676, USA.
Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
Pediatr Nephrol. 2017 May;32(5):823-834. doi: 10.1007/s00467-016-3564-5. Epub 2016 Dec 27.
Podocyte depletion, which drives progressive glomerulosclerosis in glomerular diseases, is caused by a reduction in podocyte number, size or function in the context of increasing glomerular volume.
Kidneys obtained at autopsy from premature and mature infants who died in the first year of life (n = 24) were used to measure podometric parameters for comparison with previously reported data from older kidneys.
Glomerular volume increased 4.6-fold from 0.13 ± 0.07 μm x10 in the pre-capillary loop stage, through 0.35 μm x10 at the capillary loop, to 0.60 μm x10 at the mature glomerular stage. Podocyte number per glomerulus increased from 326 ± 154 per glomerulus at the pre-capillary loop stage to 584 ± 131 per glomerulus at the capillary loop stage of glomerular development to reach a value of 589 ± 166 per glomerulus in mature glomeruli. Thus, the major podocyte number increase occurs in the early stages of glomerular development, in contradistinction to glomerular volume increase, which continues after birth in association with body growth.
As glomeruli continue to enlarge, podocyte density (number per volume) rapidly decreases, requiring a parallel rapid increase in podocyte size that allows podocyte foot processes to maintain complete coverage of the filtration surface area. Hypertrophic stresses on the glomerulus and podocyte during development and early rapid growth periods of life are therefore likely to play significant roles in determining how and when defects in podocyte structure and function due to genetic variants become clinically manifest. Therapeutic strategies aimed at minimizing mismatch between these factors may prove clinically useful.
足细胞减少是肾小球疾病中导致进行性肾小球硬化的原因,它是在肾小球体积增加的情况下,由足细胞数量、大小或功能的减少引起的。
使用从出生后第一年死亡的早产儿和成熟婴儿尸检获得的肾脏(n = 24)来测量足细胞计量参数,以便与先前报道的 older kidneys 的数据进行比较。
肾小球体积从毛细血管袢前期的0.13±0.07μm×10增加了4.6倍,到毛细血管袢期为0.35μm×10,在成熟肾小球期达到0.60μm×10。每个肾小球的足细胞数量从毛细血管袢前期的每个肾小球326±154增加到肾小球发育的毛细血管袢期的每个肾小球584±131,在成熟肾小球中达到每个肾小球589±166的值。因此,主要的足细胞数量增加发生在肾小球发育的早期阶段,这与肾小球体积增加相反,肾小球体积增加在出生后随着身体生长而持续。
随着肾小球持续增大,足细胞密度(每体积的数量)迅速降低,这需要足细胞大小同时迅速增加,以使足细胞足突能够维持对滤过表面积的完全覆盖。因此,在发育和生命早期快速生长阶段,肾小球和足细胞上的肥大应激可能在确定由于基因变异导致的足细胞结构和功能缺陷如何以及何时在临床上显现方面发挥重要作用。旨在最小化这些因素之间不匹配的治疗策略可能证明在临床上是有用的。