Suppr超能文献

使用强化学习刺激范式的计算模型中的癫痫控制。

Seizure Control in a Computational Model Using a Reinforcement Learning Stimulation Paradigm.

机构信息

1 Graduate Program in Neuroscience, University of Minnesota - Twin Cities, 312 Church St SE, Minneapolis, MN 55455, USA.

2 Department of Electrical and Computer Engineering, University of Minnesota - Twin Cities, 200 Union Street SE, Minneapolis, MN 55455, USA.

出版信息

Int J Neural Syst. 2017 Nov;27(7):1750012. doi: 10.1142/S0129065717500125. Epub 2016 Nov 2.

Abstract

Neuromodulation technologies such as vagus nerve stimulation and deep brain stimulation, have shown some efficacy in controlling seizures in medically intractable patients. However, inherent patient-to-patient variability of seizure disorders leads to a wide range of therapeutic efficacy. A patient specific approach to determining stimulation parameters may lead to increased therapeutic efficacy while minimizing stimulation energy and side effects. This paper presents a reinforcement learning algorithm that optimizes stimulation frequency for controlling seizures with minimum stimulation energy. We apply our method to a computational model called the epileptor. The epileptor model simulates inter-ictal and ictal local field potential data. In order to apply reinforcement learning to the Epileptor, we introduce a specialized reward function and state-space discretization. With the reward function and discretization fixed, we test the effectiveness of the temporal difference reinforcement learning algorithm (TD(0)). For periodic pulsatile stimulation, we derive a relation that describes, for any stimulation frequency, the minimal pulse amplitude required to suppress seizures. The TD(0) algorithm is able to identify parameters that control seizures quickly. Additionally, our results show that the TD(0) algorithm refines the stimulation frequency to minimize stimulation energy thereby converging to optimal parameters reliably. An advantage of the TD(0) algorithm is that it is adaptive so that the parameters necessary to control the seizures can change over time. We show that the algorithm can converge on the optimal solution in simulation with slow and fast inter-seizure intervals.

摘要

神经调节技术,如迷走神经刺激和深部脑刺激,已显示出在控制药物难治性患者癫痫发作方面的一些疗效。然而,癫痫发作障碍固有的患者间变异性导致治疗效果广泛。针对刺激参数的个体化方法可能会提高治疗效果,同时最大限度地减少刺激能量和副作用。本文提出了一种强化学习算法,该算法可优化刺激频率,以最小的刺激能量控制癫痫发作。我们将我们的方法应用于一种称为癫痫器(epileptor)的计算模型。癫痫器模型模拟了间发性和癫痫性局部场电位数据。为了将强化学习应用于 Epileptor,我们引入了专门的奖励函数和状态空间离散化。在奖励函数和离散化固定的情况下,我们测试了时间差分强化学习算法(TD(0))的有效性。对于周期性脉冲刺激,我们得出了一个关系,描述了对于任何刺激频率,抑制癫痫发作所需的最小脉冲幅度。TD(0)算法能够快速识别控制癫痫发作的参数。此外,我们的结果表明,TD(0)算法通过细化刺激频率来最小化刺激能量,从而可靠地收敛到最佳参数。TD(0)算法的一个优点是它是自适应的,因此控制癫痫发作所需的参数可以随时间变化。我们表明,该算法可以在模拟中收敛到最优解,无论是慢的还是快的发作间期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验