Suppr超能文献

应用于不同步心室的心脏力学高分辨率数据同化

High-resolution data assimilation of cardiac mechanics applied to a dyssynchronous ventricle.

作者信息

Balaban Gabriel, Finsberg Henrik, Odland Hans Henrik, Rognes Marie E, Ross Stian, Sundnes Joakim, Wall Samuel

机构信息

Simula Research Laboratory, P.O. Box 134 1325 Lysaker, Norway.

Department of Informatics, University of Oslo, P.O. Box 1080, Blindern 0316 Oslo, Norway.

出版信息

Int J Numer Method Biomed Eng. 2017 Nov;33(11). doi: 10.1002/cnm.2863. Epub 2017 Apr 2.

Abstract

Computational models of cardiac mechanics, personalized to a patient, offer access to mechanical information above and beyond direct medical imaging. Additionally, such models can be used to optimize and plan therapies in-silico, thereby reducing risks and improving patient outcome. Model personalization has traditionally been achieved by data assimilation, which is the tuning or optimization of model parameters to match patient observations. Current data assimilation procedures for cardiac mechanics are limited in their ability to efficiently handle high-dimensional parameters. This restricts parameter spatial resolution, and thereby the ability of a personalized model to account for heterogeneities that are often present in a diseased or injured heart. In this paper, we address this limitation by proposing an adjoint gradient-based data assimilation method that can efficiently handle high-dimensional parameters. We test this procedure on a synthetic data set and provide a clinical example with a dyssynchronous left ventricle with highly irregular motion. Our results show that the method efficiently handles a high-dimensional optimization parameter and produces an excellent agreement for personalized models to both synthetic and clinical data.

摘要

针对患者的心脏力学计算模型,能提供直接医学成像之外的力学信息。此外,此类模型可用于在计算机上优化和规划治疗方案,从而降低风险并改善患者预后。传统上,模型个性化是通过数据同化实现的,即调整或优化模型参数以匹配患者观测结果。当前用于心脏力学的数据同化程序在有效处理高维参数方面能力有限。这限制了参数空间分辨率,进而限制了个性化模型解释患病或受伤心脏中常出现的异质性的能力。在本文中,我们提出一种基于伴随梯度的数据同化方法来解决这一限制,该方法能够有效处理高维参数。我们在一个合成数据集上测试了此程序,并给出了一个左心室不同步且运动高度不规则的临床实例。我们的结果表明,该方法能有效处理高维优化参数,且个性化模型与合成数据和临床数据都能达成极佳的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验