Senn Florian, Park Young Choon
Department of Chemistry, University of Calgary, 2500 University Drive NorthWest, Calgary, Alberta T2N 1N4, Canada.
Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea.
J Chem Phys. 2016 Dec 28;145(24):244108. doi: 10.1063/1.4972231.
Constricted Variational Density Functional Theory (CV-DFT) is known to be one of the successful methods in predicting charge-transfer excitation energies. In this paper, we apply the CV-DFT method to the well-known model systems ethylene-tetrafluoroethylene (CH × CF) and the zincbacteriochlorin-bacteriochlorin complex (ZnBC-BC). The analysis of the CV-DFT energies enables us to understand the -1/R charge-transfer behaviour in CV-DFT for large separation distances R. With this we discuss the importance of orbital relaxations using the relaxed version of CV(∞)-DFT, the R-CV(∞)-DFT method. Possible effects of the optimization of the transition matrix for the relaxed self-consistent field version of CV(∞)-DFT, RSCF-CV(∞)-DFT in the case of large fragment separations are shown and we introduce two possible gradient restrictions to avoid the unwanted admixing of other transitions.
受限变分密度泛函理论(CV-DFT)是预测电荷转移激发能的成功方法之一。在本文中,我们将CV-DFT方法应用于著名的模型体系乙烯 - 四氟乙烯(CH×CF)和锌细菌叶绿素 - 细菌叶绿素复合物(ZnBC-BC)。对CV-DFT能量的分析使我们能够理解在大分离距离R时CV-DFT中的 -1/R电荷转移行为。据此,我们使用CV(∞)-DFT的松弛版本,即R-CV(∞)-DFT方法,讨论轨道弛豫的重要性。展示了在大片段分离情况下,CV(∞)-DFT的松弛自洽场版本RSCF-CV(∞)-DFT中跃迁矩阵优化的可能影响,并且我们引入了两种可能的梯度限制以避免其他跃迁的不必要混合。