Dent J A, Polson A G, Klymkowsky M W
Molecular, Cellular & Developmental Biology, University of Colorado, Boulder 80309-0347.
Development. 1989 Jan;105(1):61-74. doi: 10.1242/dev.105.1.61.
We have developed a whole-mount immunocytochemical method for Xenopus and used it to map the expression of the intermediate filament protein vimentin during early embryogenesis. We used two monoclonal antibodies, 14h7 and RV202. Both label vimentin filaments in Xenopus A6 cells, RV202 reacts specifically with vimentin (Mr, 55 x 10(3] on Western blots of A6 cells and embryos. 14h7 reacts with vimentin and a second, insoluble polypeptide of 57 x 10(3) Mr found in A6 cells. The 57 x 10(3) Mr polypeptide appears to be an intermediate filament protein immunochemically related to vimentin. In the whole-mount embryo, we first found vimentin at the time of neural tube closure (stage 19) in cells located at the lateral margins of the neural tube. By stage 26, these cells, which are presumably radial glia, are present along the entire length of the neural tube and in the tail bud. Cells in the optic vesicles express vimentin by stage 24. Vimentin-expressing mesenchymal cells appear on the surface of the somites at stage 22/23; these cells appear first on anterior somites and on progressively more posterior somites as development continues. Beginning at stage 24, vimentin appears in mesenchymal cells located ventral to the somites and associated with the pronephric ducts; these ventral cells first appear below the anterior somites and later appear below more posterior somites. The dorsal fin mesenchyme expresses vimentin at stage 26. In the head, both mesodermally-derived and neural-crest-derived mesenchymal tissues express vimentin by stage 26. These include the mesenchyme of the branchial arches, the mandibular arch, the corneal epithelium, the eye, the meninges and mesenchyme surrounding the otic vesicle. By stage 33, vimentin-expressing mesenchymal cells are present in the pericardial cavity and line the vitelline veins. Vimentin expression appears to be a marker for the differentiation of a subset of central nervous system cells and of head and body mesenchyme in the early Xenopus embryo.
我们开发了一种针对非洲爪蟾的整体免疫细胞化学方法,并利用它来绘制早期胚胎发育过程中中间丝蛋白波形蛋白的表达图谱。我们使用了两种单克隆抗体,14h7和RV202。两者都能标记非洲爪蟾A6细胞中的波形蛋白丝,RV202在A6细胞和胚胎的蛋白质免疫印迹上与波形蛋白(分子量55×10³)发生特异性反应。14h7与波形蛋白以及在A6细胞中发现的第二种不溶性多肽(分子量57×10³)发生反应。这种分子量57×10³的多肽似乎是一种在免疫化学上与波形蛋白相关的中间丝蛋白。在整体胚胎中,我们首先在神经管闭合时(第19阶段)于位于神经管外侧边缘的细胞中发现波形蛋白。到第26阶段,这些可能是放射状神经胶质细胞的细胞沿着神经管的全长以及尾芽中都存在。视泡中的细胞在第24阶段开始表达波形蛋白。表达波形蛋白的间充质细胞在第22/23阶段出现在体节表面;随着发育的继续,这些细胞首先出现在前体节,然后在越来越靠后的体节上出现。从第24阶段开始,波形蛋白出现在位于体节腹侧并与原肾管相关的间充质细胞中;这些腹侧细胞首先出现在前体节下方,随后出现在更靠后体节的下方。背鳍间充质在第26阶段表达波形蛋白。在头部,到第26阶段,中胚层来源和神经嵴来源的间充质组织都表达波形蛋白。这些组织包括鳃弓、下颌弓的间充质、角膜上皮、眼睛、脑膜以及围绕耳泡的间充质。到第33阶段,表达波形蛋白的间充质细胞存在于心包腔中并排列在卵黄静脉内。波形蛋白的表达似乎是早期非洲爪蟾胚胎中一部分中枢神经系统细胞以及头部和身体间充质分化的标志物。