Research Center in the Physics of Matter and Radiation (PMR), Laboratoire Interdisciplinaire de Spectroscopie Electronique (LISE), University of Namur , B-5000 Namur, Belgium.
Institut für Physik, Institut für Chemie & IRIS Adlershof, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 6, 12489 Berlin, Germany.
ACS Appl Mater Interfaces. 2017 Feb 1;9(4):3842-3848. doi: 10.1021/acsami.6b14758. Epub 2017 Jan 19.
Despite the wide use of blends combining an organic p-type polymer and molecular fullerene-based electron acceptor, the proper characterization of such bulk heterojunction materials is still challenging. To highlight structure-to-function relations and improve the device performance, advanced tools and strategies need to be developed to characterize composition and interfaces with sufficient accuracy. In this work, high-resolution X-ray photoelectron spectroscopy (XPS) is combined with very low energy argon ion beam sputtering to perform a nondestructive depth profile chemical analysis on full Al/P3HT:PCBM/PEDOT:PSS/ITO (P3HT, poly(3-hexylthiophene); PCBM, [6,6]-phenyl-C-butyric acid methyl ester; PEDOT, poly(3,4-ethylenedioxythiophene; PSS, polystyrenesulfonate; ITO, indium tin oxide) bulk-heterojunction solar cell device stacks. Key information, such as P3HT and PCBM composition profiles and Al-PCBM chemical bonding, are deduced in this basic device structure. The interface chemical analysis allows us to evidence, with unprecedented accuracy, the inhomogeneous distribution of PCBM, characterized by a strong segregation toward the top metal electrode. The chemical analysis high-resolution spectra allows us to reconstruct P3HT/PCBM ratio through the active layer depth and correlate with the device deposition protocol and performance. Results evidence an inhomogeneous P3HT/PCBM ratio and poorly controllable PCBM migration, which possibly explains the limited light-to-power conversion efficiency in this basic device structure. The work illustrates the high potential of XPS depth profile analysis for studying such organic/inorganic device stacks.
尽管广泛使用了将有机 p 型聚合物和基于分子富勒烯的电子受体混合的混合物,但对这种体异质结材料的适当表征仍然具有挑战性。为了突出结构与功能的关系并提高器件性能,需要开发先进的工具和策略,以足够精确的方式对组成和界面进行表征。在这项工作中,高分辨率 X 射线光电子能谱(XPS)与非常低能量的氩离子束溅射相结合,对完整的 Al/P3HT:PCBM/PEDOT:PSS/ITO(P3HT,聚(3-己基噻吩);PCBM,[6,6]-苯基-C-丁酸甲酯;PEDOT,聚(3,4-乙撑二氧噻吩);PSS,聚苯乙烯磺酸盐;ITO,铟锡氧化物)体异质结太阳能电池器件堆栈进行了无损深度剖析化学分析。在这种基本器件结构中,推断出了 P3HT 和 PCBM 组成分布以及 Al-PCBM 化学键合等关键信息。界面化学分析使我们能够以前所未有的精度证明 PCBM 的不均匀分布,其特征是强烈向顶部金属电极分离。化学分析高分辨率谱允许我们通过活性层深度重建 P3HT/PCBM 比,并与器件沉积协议和性能相关联。结果表明 P3HT/PCBM 比不均匀且 PCBM 迁移不易控制,这可能解释了这种基本器件结构中光到功率转换效率有限的原因。这项工作说明了 XPS 深度剖析分析在研究这种有机/无机器件堆栈方面的巨大潜力。