Suppr超能文献

采用多元分类方法通过快速高效液相色谱指纹图谱鉴别橄榄油与其他食用植物油

Fast-HPLC Fingerprinting to Discriminate Olive Oil from Other Edible Vegetable Oils by Multivariate Classification Methods.

作者信息

Jiménez-Carvelo Ana M, González-Casado Antonio, Pérez-Castaño Estefanía, Cuadros-Rodríguez Luis

机构信息

University of Granada, Department of Analytical Chemistry, c/ Fuentenueva, s.n. E-18071 Granada, Spain.

出版信息

J AOAC Int. 2017 Mar 1;100(2):345-350. doi: 10.5740/jaoacint.16-0411. Epub 2017 Jan 12.

Abstract

A new analytical method for the differentiation of olive oil from other vegetable oils using reversed-phase LC and applying chemometric techniques was developed. A 3 cm short column was used to obtain the chromatographic fingerprint of the methyl-transesterified fraction of each vegetable oil. The chromatographic analysis took only 4 min. The multivariate classification methods used were k-nearest neighbors, partial least-squares (PLS) discriminant analysis, one-class PLS, support vector machine classification, and soft independent modeling of class analogies. The discrimination of olive oil from other vegetable edible oils was evaluated by several classification quality metrics. Several strategies for the classification of the olive oil were used: one input-class, two input-class, and pseudo two input-class.

摘要

开发了一种使用反相液相色谱并应用化学计量学技术区分橄榄油与其他植物油的新分析方法。使用一根3厘米的短柱来获取每种植物油甲基酯交换馏分的色谱指纹图谱。色谱分析仅需4分钟。所使用的多元分类方法包括k近邻法、偏最小二乘(PLS)判别分析、单类PLS、支持向量机分类以及类类比软独立建模。通过几种分类质量指标评估了橄榄油与其他食用植物油的区分情况。使用了几种橄榄油分类策略:单输入类、双输入类和伪双输入类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验