Lin Jessica J, Ritterhouse Lauren L, Ali Siraj M, Bailey Mark, Schrock Alexa B, Gainor Justin F, Ferris Lorin A, Mino-Kenudson Mari, Miller Vincent A, Iafrate Anthony J, Lennerz Jochen K, Shaw Alice T
Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.
Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts.
J Thorac Oncol. 2017 May;12(5):872-877. doi: 10.1016/j.jtho.2017.01.004. Epub 2017 Jan 11.
Chromosomal rearrangements involving the gene ROS1 define a distinct molecular subset of NSCLCs with sensitivity to ROS1 inhibitors. Recent reports have suggested a significant overlap between ROS1 fusions and other oncogenic driver alterations, including mutations in EGFR and KRAS.
We identified patients at our institution with ROS1-rearranged NSCLC who had undergone testing for genetic alterations in additional oncogenes, including EGFR, KRAS, and anaplastic lymphoma receptor tyrosine kinase gene (ALK). Clinicopathologic features and genetic testing results were reviewed. We also examined a separate database of ROS1-rearranged NSCLCs identified through the commercial FoundationOne assay (Foundation Medicine, Cambridge, MA).
Among 62 patients with ROS1-rearranged NSCLC evaluated at our institution, none harbored concurrent ALK fusions (0%) or EGFR activating mutations (0%). KRAS mutations were detected in two cases (3.2%), one of which harbored a concurrent noncanonical KRAS I24N mutation of unknown biological significance. In a separate ROS1 fluorescence in situ hybridization-positive case, targeted sequencing failed to confirm a ROS1 fusion but instead identified a KRAS G13D mutation. No concurrent mutations in B-Raf proto-oncogene, serine/threonine kinase gene (BRAF), erb-b2 receptor tyrosine kinase 2 gene (ERBB2), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha gene (PIK3CA), AKT/serine threonine kinase 1 gene (AKT1), or mitogen-activated protein kinase kinase 1 gene (MAP2K1) were detected. Analysis of an independent data set of 166 ROS1-rearranged NSCLCs identified by FoundationOne demonstrated rare cases with co-occurring driver mutations in EGFR (one of 166) and KRAS (three of 166) and no cases with co-occurring ROS1 and ALK rearrangements.
ROS1 rearrangements rarely overlap with alterations in EGFR, KRAS, ALK, or other targetable oncogenes in NSCLC.
涉及ROS1基因的染色体重排定义了一类对ROS1抑制剂敏感的非小细胞肺癌(NSCLC)独特分子亚群。最近的报告表明,ROS1融合与其他致癌驱动改变之间存在显著重叠,包括表皮生长因子受体(EGFR)和KRAS基因的突变。
我们在本机构中识别出患有ROS1重排NSCLC且已对包括EGFR、KRAS和间变性淋巴瘤受体酪氨酸激酶基因(ALK)在内的其他致癌基因进行基因改变检测的患者。回顾了临床病理特征和基因检测结果。我们还检查了通过商业FoundationOne检测(Foundation Medicine,马萨诸塞州剑桥)识别出的ROS1重排NSCLC的单独数据库。
在我们机构评估的62例ROS1重排NSCLC患者中,无一例同时存在ALK融合(0%)或EGFR激活突变(0%)。2例(3.2%)检测到KRAS突变,其中1例同时存在生物学意义不明的非经典KRAS I24N突变。在另一例ROS1荧光原位杂交阳性病例中,靶向测序未能证实ROS1融合,但却鉴定出KRAS G13D突变。未检测到B-Raf原癌基因、丝氨酸/苏氨酸激酶基因(BRAF)、erb-b2受体酪氨酸激酶2基因(ERBB2)、磷脂酰肌醇-4,5-二磷酸3-激酶催化亚基α基因(PIK3CA)、AKT/丝氨酸苏氨酸激酶1基因(AKT1)或丝裂原活化蛋白激酶激酶1基因(MAP2K1)的同时突变。对FoundationOne识别出的166例ROS1重排NSCLC独立数据集的分析表明,EGFR(166例中的1例)和KRAS(166例中的3例)同时发生驱动突变的情况罕见,且未发现ROS1和ALK重排同时发生的病例。
ROS1重排在NSCLC中很少与EGFR、KRAS、ALK或其他可靶向致癌基因的改变重叠。