Suppr超能文献

3D打印在肾芯片平台中的作用。

A Role for 3D Printing in Kidney-on-a-Chip Platforms.

作者信息

Sochol Ryan D, Gupta Navin R, Bonventre Joseph V

机构信息

Department of Mechanical Engineering, University of Maryland, College Park, MD.

Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA.

出版信息

Curr Transplant Rep. 2016 Mar;3(1):82-92. doi: 10.1007/s40472-016-0085-x. Epub 2016 Jan 20.

Abstract

The advancement of "kidney-on-a-chip" platforms - submillimeter-scale fluidic systems designed to recapitulate renal functions in vitro - directly impacts a wide range of biomedical fields, including drug screening, cell and tissue engineering, toxicity testing, and disease modelling. To fabricate kidney-on-a-chip technologies, researchers have primarily adapted traditional micromachining techniques that are rooted in the integrated circuit industry; hence the term, "chip." A significant challenge, however, is that such methods are inherently monolithic, which limits one's ability to accurately recreate the geometric and architectural complexity of the kidney in vivo. Better reproduction of the anatomical complexity of the kidney will allow for more instructive modelling of physiological and pathophysiological events. Emerging additive manufacturing or "three-dimensional (3D) printing" techniques could provide a promising alternative to conventional methodologies. In this article, we discuss recent progress in the development of both kidney-on-a-chip platforms and state-of-the-art submillimeter-scale 3D printing methods, with a focus on biophysical and architectural capabilities. Lastly, we examine the potential for 3D printing-based approaches to extend the efficacy of kidney-on-a-chip systems.

摘要

“芯片肾脏”平台是一种旨在体外模拟肾功能的亚毫米级流体系统,其发展直接影响到广泛的生物医学领域,包括药物筛选、细胞和组织工程、毒性测试以及疾病建模。为了制造芯片肾脏技术,研究人员主要采用了源自集成电路行业的传统微加工技术;因此有了“芯片”这个术语。然而,一个重大挑战是,这些方法本质上是整体式的,这限制了人们在体内准确重现肾脏几何和结构复杂性的能力。更好地再现肾脏的解剖复杂性将有助于对生理和病理生理事件进行更具指导性的建模。新兴的增材制造或“三维(3D)打印”技术可能为传统方法提供一个有前景的替代方案。在本文中,我们讨论了芯片肾脏平台和最先进的亚毫米级3D打印方法在开发方面的最新进展,重点关注生物物理和结构能力。最后,我们研究了基于3D打印的方法扩展芯片肾脏系统功效的潜力。

相似文献

1
A Role for 3D Printing in Kidney-on-a-Chip Platforms.
Curr Transplant Rep. 2016 Mar;3(1):82-92. doi: 10.1007/s40472-016-0085-x. Epub 2016 Jan 20.
2
3D printed microfluidic circuitry via multijet-based additive manufacturing.
Lab Chip. 2016 Feb 21;16(4):668-78. doi: 10.1039/c5lc01389e. Epub 2016 Jan 4.
4
3D-printed fluidic networks as vasculature for engineered tissue.
Lab Chip. 2016 May 24;16(11):2025-43. doi: 10.1039/c6lc00193a.
5
Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications.
Adv Mater. 2016 Jul;28(28):5794-821. doi: 10.1002/adma.201506215. Epub 2016 May 2.
6
The crossing and integration between microfluidic technology and 3D printing for organ-on-chips.
J Mater Chem B. 2018 Oct 21;6(39):6191-6206. doi: 10.1039/c8tb01661e. Epub 2018 Sep 13.
7
3D Printing Solutions for Microfluidic Chip-To-World Connections.
Micromachines (Basel). 2018 Feb 6;9(2):71. doi: 10.3390/mi9020071.
8
Progressive 3D Printing Technology and Its Application in Medical Materials.
Front Pharmacol. 2020 Mar 20;11:122. doi: 10.3389/fphar.2020.00122. eCollection 2020.
9
Microengineered Organ-on-a-chip Platforms towards Personalized Medicine.
Curr Pharm Des. 2018;24(45):5354-5366. doi: 10.2174/1381612825666190222143542.
10
3D-printed microfluidic devices.
Biofabrication. 2016 Jun 20;8(2):022001. doi: 10.1088/1758-5090/8/2/022001.

引用本文的文献

1
Physicochemical parameters that underlie inkjet printing for medical applications.
Biophys Rev (Melville). 2020 Nov 16;1(1):011301. doi: 10.1063/5.0011924. eCollection 2020 Dec.
2
Application of three-dimensional printing technology in renal diseases.
Front Med (Lausanne). 2022 Dec 2;9:1088592. doi: 10.3389/fmed.2022.1088592. eCollection 2022.
3
Application of medical imaging methods and artificial intelligence in tissue engineering and organ-on-a-chip.
Front Bioeng Biotechnol. 2022 Sep 12;10:985692. doi: 10.3389/fbioe.2022.985692. eCollection 2022.
4
Kidney-on-a-Chip: Mechanical Stimulation and Sensor Integration.
Sensors (Basel). 2022 Sep 13;22(18):6889. doi: 10.3390/s22186889.
5
Applications of Polymers for Organ-on-Chip Technology in Urology.
Polymers (Basel). 2022 Apr 20;14(9):1668. doi: 10.3390/polym14091668.
6
The Roles of Membrane Technology in Artificial Organs: Current Challenges and Perspectives.
Membranes (Basel). 2021 Mar 28;11(4):239. doi: 10.3390/membranes11040239.
7
Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
PLoS One. 2020 Oct 28;15(10):e0240237. doi: 10.1371/journal.pone.0240237. eCollection 2020.
9
Efficient Drug Screening and Nephrotoxicity Assessment on Co-culture Microfluidic Kidney Chip.
Sci Rep. 2020 Apr 16;10(1):6568. doi: 10.1038/s41598-020-63096-3.
10
Tumor-like lung cancer model based on 3D bioprinting.
3 Biotech. 2018 Dec;8(12):501. doi: 10.1007/s13205-018-1519-1. Epub 2018 Nov 27.

本文引用的文献

1
Three-dimensional printed millifluidic devices for zebrafish embryo tests.
Biomicrofluidics. 2015 Jul 22;9(4):046502. doi: 10.1063/1.4927379. eCollection 2015 Jul.
2
Life in 3D is never flat: 3D models to optimise drug delivery.
J Control Release. 2015 Oct 10;215:39-54. doi: 10.1016/j.jconrel.2015.07.020. Epub 2015 Jul 26.
3
Tissue engineering: Organs from the lab.
Nature. 2015 Jun 18;522(7556):373-7. doi: 10.1038/522373a.
4
Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery.
Biomaterials. 2015 Aug;61:203-15. doi: 10.1016/j.biomaterials.2015.05.031. Epub 2015 May 19.
6
Microfluidic Organ-on-a-Chip Technology for Advancement of Drug Development and Toxicology.
Adv Healthc Mater. 2015 Jul 15;4(10):1426-50. doi: 10.1002/adhm.201500040. Epub 2015 Mar 26.
7
Artificial organs: Honey, I shrunk the lungs.
Nature. 2015 Mar 26;519(7544):S16-8. doi: 10.1038/519S16a.
8
Organs-on-chips at the frontiers of drug discovery.
Nat Rev Drug Discov. 2015 Apr;14(4):248-60. doi: 10.1038/nrd4539. Epub 2015 Mar 20.
9
Additive manufacturing. Continuous liquid interface production of 3D objects.
Science. 2015 Mar 20;347(6228):1349-52. doi: 10.1126/science.aaa2397. Epub 2015 Mar 16.
10
3D-printed microfluidic automation.
Lab Chip. 2015 Apr 21;15(8):1934-41. doi: 10.1039/c5lc00126a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验