Suppr超能文献

用于黑猩猩出现和占用情况估计的自动面部检测

Automated face detection for occurrence and occupancy estimation in chimpanzees.

作者信息

Crunchant Anne-Sophie, Egerer Monika, Loos Alexander, Burghardt Tilo, Zuberbühler Klaus, Corogenes Katherine, Leinert Vera, Kulik Lars, Kühl Hjalmar S

机构信息

Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.

Fraunhofer Institute for Digital Media Technology IDMT, Ilmenau, Germany.

出版信息

Am J Primatol. 2017 Mar;79(3):1-12. doi: 10.1002/ajp.22627. Epub 2017 Jan 17.

Abstract

UNLABELLED

Surveying endangered species is necessary to evaluate conservation effectiveness. Camera trapping and biometric computer vision are recent technological advances. They have impacted on the methods applicable to field surveys and these methods have gained significant momentum over the last decade. Yet, most researchers inspect footage manually and few studies have used automated semantic processing of video trap data from the field. The particular aim of this study is to evaluate methods that incorporate automated face detection technology as an aid to estimate site use of two chimpanzee communities based on camera trapping. As a comparative baseline we employ traditional manual inspection of footage. Our analysis focuses specifically on the basic parameter of occurrence where we assess the performance and practical value of chimpanzee face detection software. We found that the semi-automated data processing required only 2-4% of the time compared to the purely manual analysis. This is a non-negligible increase in efficiency that is critical when assessing the feasibility of camera trap occupancy surveys. Our evaluations suggest that our methodology estimates the proportion of sites used relatively reliably. Chimpanzees are mostly detected when they are present and when videos are filmed in high-resolution: the highest recall rate was 77%, for a false alarm rate of 2.8% for videos containing only chimpanzee frontal face views. Certainly, our study is only a first step for transferring face detection software from the lab into field application. Our results are promising and indicate that the current limitation of detecting chimpanzees in camera trap footage due to lack of suitable face views can be easily overcome on the level of field data collection, that is, by the combined placement of multiple high-resolution cameras facing reverse directions. This will enable to routinely conduct chimpanzee occupancy surveys based on camera trapping and semi-automated processing of footage.

RESEARCH HIGHLIGHTS

Using semi-automated ape face detection technology for processing camera trap footage requires only 2-4% of the time compared to manual analysis and allows to estimate site use by chimpanzees relatively reliably.

摘要

未标注

对濒危物种进行调查对于评估保护成效至关重要。相机陷阱和生物特征计算机视觉是近期的技术进步。它们对适用于野外调查的方法产生了影响,并且这些方法在过去十年中获得了显著发展。然而,大多数研究人员仍手动检查录像,很少有研究使用来自野外的视频陷阱数据的自动语义处理。本研究的特定目的是评估将自动面部检测技术纳入其中的方法,以辅助基于相机陷阱估计两个黑猩猩群落的活动地点使用情况。作为比较基线,我们采用对录像的传统手动检查。我们的分析特别关注出现情况的基本参数,在此我们评估黑猩猩面部检测软件的性能和实用价值。我们发现,与纯手动分析相比,半自动数据处理仅需2 - 4%的时间。这是效率上不可忽视的提高,在评估相机陷阱占用调查的可行性时至关重要。我们的评估表明,我们的方法相对可靠地估计了使用地点的比例。黑猩猩大多在它们出现时以及视频以高分辨率拍摄时被检测到:对于仅包含黑猩猩正面面部视图的视频,最高召回率为77%,误报率为2.8%。当然,我们的研究只是将面部检测软件从实验室转移到实地应用的第一步。我们的结果很有前景,表明目前由于缺乏合适的面部视图而在相机陷阱录像中检测黑猩猩的局限性可以在实地数据收集层面轻松克服,即通过组合放置多个朝向相反方向的高分辨率相机。这将使得能够基于相机陷阱和录像的半自动处理常规开展黑猩猩占用调查。

研究亮点

与手动分析相比,使用半自动猿类面部检测技术处理相机陷阱录像仅需2 - 4%的时间,并能相对可靠地估计黑猩猩的活动地点使用情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验