Suppr超能文献

DMirNet:推断直接的微小RNA-信使核糖核酸关联网络。

DMirNet: Inferring direct microRNA-mRNA association networks.

作者信息

Lee Minsu, Lee HyungJune

机构信息

Department of Computer Science and Engineering, Ewha Womans University, Seoul, South Korea.

出版信息

BMC Syst Biol. 2016 Dec 5;10(Suppl 5):125. doi: 10.1186/s12918-016-0373-1.

Abstract

BACKGROUND

MicroRNAs (miRNAs) play important regulatory roles in the wide range of biological processes by inducing target mRNA degradation or translational repression. Based on the correlation between expression profiles of a miRNA and its target mRNA, various computational methods have previously been proposed to identify miRNA-mRNA association networks by incorporating the matched miRNA and mRNA expression profiles. However, there remain three major issues to be resolved in the conventional computation approaches for inferring miRNA-mRNA association networks from expression profiles. 1) Inferred correlations from the observed expression profiles using conventional correlation-based methods include numerous erroneous links or over-estimated edge weight due to the transitive information flow among direct associations. 2) Due to the high-dimension-low-sample-size problem on the microarray dataset, it is difficult to obtain an accurate and reliable estimate of the empirical correlations between all pairs of expression profiles. 3) Because the previously proposed computational methods usually suffer from varying performance across different datasets, a more reliable model that guarantees optimal or suboptimal performance across different datasets is highly needed.

RESULTS

In this paper, we present DMirNet, a new framework for identifying direct miRNA-mRNA association networks. To tackle the aforementioned issues, DMirNet incorporates 1) three direct correlation estimation methods (namely Corpcor, SPACE, Network deconvolution) to infer direct miRNA-mRNA association networks, 2) the bootstrapping method to fully utilize insufficient training expression profiles, and 3) a rank-based Ensemble aggregation to build a reliable and robust model across different datasets. Our empirical experiments on three datasets demonstrate the combinatorial effects of necessary components in DMirNet. Additional performance comparison experiments show that DMirNet outperforms the state-of-the-art Ensemble-based model [1] which has shown the best performance across the same three datasets, with a factor of up to 1.29. Further, we identify 43 putative novel multi-cancer-related miRNA-mRNA association relationships from an inferred Top 1000 direct miRNA-mRNA association network.

CONCLUSIONS

We believe that DMirNet is a promising method to identify novel direct miRNA-mRNA relations and to elucidate the direct miRNA-mRNA association networks. Since DMirNet infers direct relationships from the observed data, DMirNet can contribute to reconstructing various direct regulatory pathways, including, but not limited to, the direct miRNA-mRNA association networks.

摘要

背景

微小RNA(miRNA)通过诱导靶mRNA降解或翻译抑制,在广泛的生物学过程中发挥重要的调控作用。基于miRNA与其靶mRNA表达谱之间的相关性,先前已提出各种计算方法,通过整合匹配的miRNA和mRNA表达谱来识别miRNA - mRNA关联网络。然而,从表达谱推断miRNA - mRNA关联网络的传统计算方法仍存在三个主要问题有待解决。1)使用基于传统相关性的方法从观察到的表达谱推断出的相关性包括许多错误的链接或由于直接关联之间的传递信息流导致的边权重高估。2)由于微阵列数据集存在高维低样本量问题,难以获得所有表达谱对之间经验相关性的准确可靠估计。3)因为先前提出的计算方法在不同数据集上的性能通常各不相同,所以非常需要一个能保证在不同数据集上具有最优或次优性能的更可靠模型。

结果

在本文中,我们提出了DMirNet,这是一种用于识别直接miRNA - mRNA关联网络的新框架。为了解决上述问题,DMirNet整合了:1)三种直接相关性估计方法(即Corpcor、SPACE、网络反卷积)来推断直接miRNA - mRNA关联网络;2)自展法以充分利用不足的训练表达谱;3)基于排序的集成聚合,以在不同数据集上构建可靠且稳健的模型。我们在三个数据集上进行的实证实验证明了DMirNet中必要组件的组合效应。额外的性能比较实验表明,DMirNet优于在相同的三个数据集上表现最佳的基于集成的现有模型[1],性能提升高达1.29倍。此外,我们从推断出的前1000个直接miRNA - mRNA关联网络中识别出43个推定的新型多癌相关miRNA - mRNA关联关系。

结论

我们认为DMirNet是一种有前景的方法,可用于识别新型直接miRNA - mRNA关系并阐明直接miRNA - mRNA关联网络。由于DMirNet从观察到的数据推断直接关系,因此它有助于重建各种直接调控途径,包括但不限于直接miRNA - mRNA关联网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb7e/5249041/89f11999ede5/12918_2016_373_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验