Suppr超能文献

基于多水平建模方法对体内冠状动脉节段动脉粥样硬化斑块发展的预测

Prediction of Atherosclerotic Plaque Development in an In Vivo Coronary Arterial Segment Based on a Multilevel Modeling Approach.

作者信息

Sakellarios Antonis I, Raber Lorenz, Bourantas Christos V, Exarchos Themis P, Athanasiou Lambros S, Pelosi Gualtiero, Koskinas Konstantinos C, Parodi Oberdan, Naka Katerina K, Michalis Lampros K, Serruys Patrick W, Garcia-Garcia Hector M, Windecker Stephan, Fotiadis Dimitrios I

出版信息

IEEE Trans Biomed Eng. 2017 Aug;64(8):1721-1730. doi: 10.1109/TBME.2016.2619489. Epub 2016 Oct 19.

Abstract

OBJECTIVE

The aim of this study is to explore major mechanisms of atherosclerotic plaque growth, presenting a proof-of-concept numerical model.

METHODS

To this aim, a human reconstructed left circumflex coronary artery is utilized for a multilevel modeling approach. More specifically, the first level consists of the modeling of blood flow and endothelial shear stress (ESS) computation. The second level includes the modeling of low-density lipoprotein (LDL) and high-density lipoprotein and monocytes transport through the endothelial membrane to vessel wall. The third level comprises of the modeling of LDL oxidation, macrophages differentiation, and foam cells formation. All modeling levels integrate experimental findings to describe the major mechanisms that occur in the arterial physiology. In order to validate the proposed approach, we utilize a patient specific scenario by comparing the baseline computational results with the changes in arterial wall thickness, lumen diameter, and plaque components using follow-up data.

RESULTS

The results of this model show that ESS and LDL concentration have a good correlation with the changes in plaque area [R = 0.365 (P = 0.029, adjusted R = 0.307) and R = 0.368 (P = 0.015, adjusted R = 0.342), respectively], whereas the introduction of the variables of oxidized LDL, macrophages, and foam cells as independent predictors improves the accuracy in predicting regions potential for atherosclerotic plaque development [R = 0.847 (P = 0.009, adjusted R = 0.738)].

CONCLUSION

Advanced computational models can be used to increase the accuracy to predict regions which are prone to plaque development.

SIGNIFICANCE

Atherosclerosis is one of leading causes of death worldwide. For this purpose computational models have to be implemented to predict disease progression.

摘要

目的

本研究旨在探索动脉粥样硬化斑块生长的主要机制,提出一个概念验证数值模型。

方法

为此,利用一条人类重建的左旋冠状动脉进行多级建模方法。更具体地说,第一级包括血流建模和内皮剪切应力(ESS)计算。第二级包括低密度脂蛋白(LDL)、高密度脂蛋白和单核细胞通过内皮膜向血管壁转运的建模。第三级包括LDL氧化、巨噬细胞分化和泡沫细胞形成的建模。所有建模级别都整合了实验结果,以描述动脉生理学中发生的主要机制。为了验证所提出的方法,我们通过使用随访数据将基线计算结果与动脉壁厚度、管腔直径和斑块成分的变化进行比较,采用了患者特定的情景。

结果

该模型的结果表明,ESS和LDL浓度与斑块面积变化具有良好的相关性[分别为R = 0.365(P = 0.029,调整后R = 0.307)和R = 0.368(P = 0.015,调整后R = 0.342)],而将氧化LDL、巨噬细胞和泡沫细胞的变量作为独立预测因子引入,提高了预测动脉粥样硬化斑块发展潜在区域的准确性[R = 0.847(P = 0.009,调整后R = 0.738)]。

结论

先进的计算模型可用于提高预测易发生斑块发展区域的准确性。

意义

动脉粥样硬化是全球主要死亡原因之一。为此,必须实施计算模型来预测疾病进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验