IEEE Trans Med Imaging. 2017 Mar;36(3):685-695. doi: 10.1109/TMI.2016.2635673. Epub 2016 Dec 5.
In endovascular catheter interventions, the determination of the three-dimensional (3D) catheter shape can increase navigation information and help reduce trauma. This study describes a shape determination method for a flexible interventional catheter using ultrasound scanning and a two-step particle filter without X-ray fluoroscopy. First, we propose a multi-feature, multi-template particle filter algorithm for accurate catheter tracking from ultrasound images. Second, we model the mechanical behavior of the catheter and apply a particle filter shape optimization algorithm to refine the results from the first step. Finally, the acquired catheter's 3D shapes are displayed together with the preoperative 3D images of the cardiac structures to provide intuitive endovascular navigation. We validated our method using ultrasound scanning of the straight and curved catheters in a water tank, and the shape determination errors were 1.44 ± 0.38 mm and 1.95 ± 0.46 mm, respectively. Further, endovascular catheter shape determination was validated in a catheter intervention experiment with a heart phantom. The error of the acquired endovascular catheter shape was 2.23 ± 0.87 mm. These results demonstrate that our two-step method is both accurate and effective. Using ultrasound scanning for shape determination of a flexible catheter will be helpful in endovascular interventions, reducing exposure to radiation and providing rich navigation information.
在血管内导管介入治疗中,确定三维(3D)导管形状可以增加导航信息,有助于减少创伤。本研究描述了一种使用超声扫描和无 X 射线透视的两步粒子滤波器来确定柔性介入导管形状的方法。首先,我们提出了一种用于从超声图像中进行精确导管跟踪的多特征、多模板粒子滤波器算法。其次,我们对导管的力学行为进行建模,并应用粒子滤波器形状优化算法来细化第一步的结果。最后,获取的导管的 3D 形状与心脏结构的术前 3D 图像一起显示,提供直观的血管内导航。我们使用水箱中的直导管和弯导管进行超声扫描验证了我们的方法,形状确定误差分别为 1.44 ± 0.38mm 和 1.95 ± 0.46mm。此外,还在心脏模拟物的导管介入实验中验证了血管内导管的形状确定。所获得的血管内导管形状的误差为 2.23 ± 0.87mm。这些结果表明,我们的两步法既准确又有效。使用超声扫描来确定柔性导管的形状将有助于血管内介入治疗,减少辐射暴露并提供丰富的导航信息。