High Performance Computing (HPC) Laboratory, Department of Mechanical Engineering, Ferdowsi University of Mashhad, 91775-1111, Mashhad, Iran.
Institute for Nano- and Microfluidics, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany.
Sci Rep. 2017 Jan 27;7:41412. doi: 10.1038/srep41412.
A net gas flow can be induced in the gap between periodically structured surfaces held at fixed but different temperatures when the reflection symmetry along the channel axis is broken. Such a situation arises when one surface features a ratchet structure and can be augmented by altering the boundary conditions on different parts of this surface, with some regions reflecting specularly and others diffusely. In order to investigate the physical mechanisms inducing the flow in this configuration at various Knudsen numbers and geometric configurations, direct simulation Monte Carlo (DSMC) simulations are employed using transient adaptive subcells for collision partner selection. At large Knudsen numbers the results compare favorably with analytical expressions, while for small Knudsen numbers a qualitative explanation for the flow in the strong temperature inhomogeneity at the tips of the ratchet is provided. A detailed investigation of the performance for various ratchet geometries suggests optimum working conditions for a Knudsen pump based on this mechanism.
当周期性结构表面之间的间隙的通道轴对称反射对称性被打破时,在保持固定但不同温度的情况下,可以在间隙中产生净气流。当一个表面具有棘齿结构并且可以通过改变该表面不同部分的边界条件来增强时,就会出现这种情况,其中一些区域反射镜反射,而其他区域则漫反射。为了研究在各种克努森数和几何构型下在这种构型中引起流动的物理机制,使用瞬态自适应亚单元进行碰撞伙伴选择的直接模拟蒙特卡罗 (DSMC) 模拟。在大克努森数下,结果与分析表达式非常吻合,而在小克努森数下,对在棘齿尖端的强温度非均匀性中流动的定性解释。对各种棘齿几何形状的性能的详细研究表明,基于这种机制的克努森泵的最佳工作条件。