Caron Alexandre, Labbé Sébastien M, Carter Sophie, Roy Marie-Claude, Lecomte Roger, Ricquier Daniel, Picard Frédéric, Richard Denis
Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, Canada.
Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; Département de Pharmacie, Faculté de Pharmacie, Université Laval, Québec, Québec, Canada.
Biochimie. 2017 Mar;134:118-126. doi: 10.1016/j.biochi.2017.01.006. Epub 2017 Jan 24.
Uncoupling protein 2 (UCP2) was discovered in 1997 and classified as an uncoupling protein largely based on its homology of sequence with UCP1. Since its discovery, the uncoupling function of UCP2 has been questioned and there is yet no consensus on the true function of this protein. UCP2 was first proposed to be a reactive oxygen species (ROS) regulator and an insulin secretion modulator. More recently, it was demonstrated as a regulator of the mitochondrial fatty acid oxidation, which prompted us to investigate its role in the metabolic and thermogenic functions of brown adipose tissue. We first investigated the role of UCP2 in affecting the glycolysis capacity by evaluating the extracellular flux in cells lacking UCP2. We thereafter investigated the role of UCP2 in BAT thermogenesis with positron emission tomography using the metabolic tracers [C]-acetate (metabolic activity), 2-deoxy-2-[F]-fluoro-d-glucose (FDG, glucose uptake) and 14(R,S)-[F]fluoro-6-thia-heptadecanoic acid [FTHA, non-esterified fatty acid (NEFA) uptake]. The effect of the β3-adrenoreceptor (ADRB3) selective agonist, CL316,243 (CL), on BAT FDG and FTHA uptakes, as well as C-acetate activity was assessed in UCP2 and UCP2 mice exposed at room temperature or adapted to cold. Our results suggest that despite the fact that UCP2 does not have the uncoupling potential of UCP1, its contribution to BAT thermogenesis and to the adaptation to cold exposure appears crucial. Notably, we found that the absence of UCP2 promoted a shift toward glucose utilization and increased glycolytic capacity in BAT, which conferred a better oxidative/thermogenic activity/capacity following an acute adrenergic stimulation. However, following cold exposure, a context of high-energy demand, BAT of UCP2 mice failed to adapt and thermogenesis was impaired. We conclude that UCP2 regulates BAT thermogenesis by favouring the utilization of NEFA, a process required for the adaptation to cold.
解偶联蛋白2(UCP2)于1997年被发现,主要基于其与UCP1的序列同源性被归类为一种解偶联蛋白。自发现以来,UCP2的解偶联功能一直受到质疑,关于该蛋白的真正功能尚无定论。UCP2最初被认为是一种活性氧(ROS)调节剂和胰岛素分泌调节剂。最近,它被证明是线粒体脂肪酸氧化的调节剂,这促使我们研究其在棕色脂肪组织的代谢和产热功能中的作用。我们首先通过评估缺乏UCP2的细胞中的细胞外通量来研究UCP2在影响糖酵解能力方面的作用。此后,我们使用代谢示踪剂[C]-乙酸盐(代谢活性)、2-脱氧-2-[F]-氟-d-葡萄糖(FDG,葡萄糖摄取)和14(R,S)-[F]氟-6-硫代十七烷酸[FTHA,非酯化脂肪酸(NEFA)摄取],通过正电子发射断层扫描研究UCP2在棕色脂肪组织产热中的作用。在室温下暴露或适应寒冷的UCP2和UCP2小鼠中,评估β3-肾上腺素能受体(ADRB3)选择性激动剂CL316,243(CL)对棕色脂肪组织FDG和FTHA摄取以及C-乙酸盐活性的影响。我们的结果表明,尽管UCP2不具有UCP1的解偶联潜力,但其对棕色脂肪组织产热和对寒冷暴露的适应性的贡献似乎至关重要。值得注意的是,我们发现缺乏UCP2会促进棕色脂肪组织向葡萄糖利用的转变并增加糖酵解能力,这在急性肾上腺素能刺激后赋予了更好的氧化/产热活性/能力。然而,在寒冷暴露后,在高能量需求的情况下,UCP2小鼠的棕色脂肪组织未能适应且产热受损。我们得出结论,UCP2通过促进NEFA的利用来调节棕色脂肪组织产热,这是适应寒冷所需的过程。