Suppr超能文献

基于基因表达分析对细胞信号通路激活的预测实现有效的乳腺癌个性化治疗。

Effective personalized therapy for breast cancer based on predictions of cell signaling pathway activation from gene expression analysis.

作者信息

Jhan J-R, Andrechek E R

机构信息

Department of Physiology, Michigan State University, East Lansing, MI, USA.

出版信息

Oncogene. 2017 Jun 22;36(25):3553-3561. doi: 10.1038/onc.2016.503. Epub 2017 Jan 30.

Abstract

Current therapeutic outcomes for breast cancer underscore the complexity of treating a heterogeneous disease. Indeed, studies have shown that differences in gene expression among patients with the same subtype of breast cancer are correlated with the response to treatment. This strongly suggests that there is an urgent need to treat breast cancer with a personalized approach. Here we employed cell signaling pathway signatures to predict pathway activity in subtypes of MMTV-Myc mammary tumors. We then split tumors into subsets and developed individualized combinatorial treatments for two subtypes with distinct pathway activation patterns. Elevation of the EGFR, RAS and TGFβ pathways was observed in one subtype whereas these pathways were not predicted to be active in the other subtype that had high predicted activity of the Myc, Stat3 and Akt pathways. In a proof-of-principle experiment, treatment of these two subtypes with targeted therapies inhibited tumor growth only in the subtype of tumor where the therapy was designed to be active. We then analyzed gene expression profiles of human breast cancer patients and patient-derived xenograft (PDX) samples to predict pathway activity, and validated our approach of developing individualized treatments in mice with PDX tumors. Importantly, our combinatorial therapy resulted in tumor regression, including regression in PDX samples from triple-negative breast cancer. Together our data is a proof-of-principle experiment that demonstrates that cell signaling pathway signature-guided treatment for breast cancer is viable.

摘要

目前乳腺癌的治疗效果凸显了治疗这种异质性疾病的复杂性。事实上,研究表明,同一亚型乳腺癌患者的基因表达差异与治疗反应相关。这强烈表明,迫切需要采用个性化方法治疗乳腺癌。在此,我们利用细胞信号通路特征来预测MMTV-Myc乳腺肿瘤亚型中的通路活性。然后,我们将肿瘤分为多个亚组,并针对两种具有不同通路激活模式的亚型开发了个性化的联合治疗方案。在一个亚型中观察到EGFR、RAS和TGFβ通路的激活,而在另一个具有高预测活性的Myc、Stat3和Akt通路的亚型中,这些通路预计不活跃。在一个原理验证实验中,用靶向疗法治疗这两种亚型,仅在设计的疗法具有活性的肿瘤亚型中抑制了肿瘤生长。然后,我们分析了人类乳腺癌患者和患者来源的异种移植(PDX)样本的基因表达谱,以预测通路活性,并在携带PDX肿瘤的小鼠中验证了我们开发个性化治疗方案的方法。重要的是,我们的联合疗法导致了肿瘤消退,包括三阴性乳腺癌PDX样本中的消退。我们的数据共同构成了一个原理验证实验,证明了细胞信号通路特征引导的乳腺癌治疗是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验