Suppr超能文献

利用探索性数据分析来识别和预测2010 - 2014年多州区域内人类莱姆病病例聚集的模式。

Using exploratory data analysis to identify and predict patterns of human Lyme disease case clustering within a multistate region, 2010-2014.

作者信息

Hendricks Brian, Mark-Carew Miguella

机构信息

West Virginia University School of Public Health, One Medical Center Drive, PO Box 9190, Morgantown, WV 26506, United States ; West Virginia Bureau of Public Health Office of Epidemiology and Preventative Services, 350 Capital St., Charleston, WV 25301, United States .

West Virginia University School of Public Health, One Medical Center Drive, PO Box 9190, Morgantown, WV 26506, United States ; West Virginia Bureau of Public Health Office of Epidemiology and Preventative Services, 350 Capital St., Charleston, WV 25301, United States.

出版信息

Spat Spatiotemporal Epidemiol. 2017 Feb;20:35-43. doi: 10.1016/j.sste.2016.12.003. Epub 2017 Jan 12.

Abstract

Lyme disease is the most commonly reported vectorborne disease in the United States. The objective of our study was to identify patterns of Lyme disease reporting after multistate inclusion to mitigate potential border effects. County-level human Lyme disease surveillance data were obtained from Kentucky, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia state health departments. Rate smoothing and Local Moran's I was performed to identify clusters of reporting activity and identify spatial outliers. A logistic generalized estimating equation was performed to identify significant associations in disease clustering over time. Resulting analyses identified statistically significant (P=0.05) clusters of high reporting activity and trends over time. High reporting activity aggregated near border counties in high incidence states, while low reporting aggregated near shared county borders in non-high incidence states. Findings highlight the need for exploratory surveillance approaches to describe the extent to which state level reporting affects accurate estimation of Lyme disease progression.

摘要

莱姆病是美国报告最多的媒介传播疾病。我们研究的目的是确定多州纳入后莱姆病报告的模式,以减轻潜在的边界效应。县级人类莱姆病监测数据来自肯塔基州、马里兰州、俄亥俄州、宾夕法尼亚州、弗吉尼亚州和西弗吉尼亚州的卫生部门。进行率平滑和局部莫兰指数分析,以识别报告活动的集群并确定空间异常值。采用逻辑广义估计方程来识别疾病聚集随时间的显著关联。最终分析确定了具有统计学意义(P = 0.05)的高报告活动集群和随时间的趋势。高报告活动聚集在高发病率州的边境县附近,而低报告聚集在非高发病率州的共享县边界附近。研究结果强调了探索性监测方法的必要性,以描述州级报告对莱姆病进展准确估计的影响程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验