Richter Lubna V, Franks Ashley E, Weis Robert M, Sandler Steven J
Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts, USA
Department of Microbiology, University of Massachusetts at Amherst, Amherst, Massachusetts, USA.
J Bacteriol. 2017 Mar 28;199(8). doi: 10.1128/JB.00716-16. Print 2017 Apr 15.
, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of -type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of to specific surfaces. Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in is still a subject of research. In this study, we identified a posttranslational modification of the major type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring cells.
一种厌氧金属还原细菌拥有IV型菌毛。这些菌毛是生物膜形成过程中的内在结构元件,并且与多种细胞色素一起,被认为可作为导电纳米线,实现向金属氧化物和石墨阳极的长距离电子转移(ET)。在此,我们报告称,IV型菌毛的结构亚基PilA蛋白内一个非保守氨基酸残基的翻译后修饰,对于在不溶性细胞外电子受体上生长至关重要。对分泌的PilA蛋白进行基质辅助激光解吸电离(MALDI)质谱分析,发现酪氨酸-32发生了翻译后修饰,修饰部分的质量与甘油磷酸基团一致。将该酪氨酸突变为苯丙氨酸会抑制以Fe(III)氧化物作为唯一电子受体时的细胞生长。此外,这种氨基酸取代严重减少了在石墨表面的生物膜形成,并损害了微生物燃料电池中的电流输出。这些结果表明,附着于不溶性电子受体的能力对于细胞利用它们的能力起着关键作用。这项工作表明,Y32的甘油磷酸化修饰是导致IV型菌毛表面电荷的关键因素,影响了该细菌对特定表面的粘附。IV型菌毛是细菌的附属结构,在细胞粘附、毒力、颤动运动以及从细菌细胞到不溶性细胞外电子受体的长距离电子转移(ET)中发挥作用。IV型菌毛在该细菌中进行ET的机制和作用仍是一个研究课题。在本研究中,我们鉴定出主要IV型菌毛蛋白的一种翻译后修饰,推测为甘油磷酸部分。我们表明,与野生型相比,将甘油磷酸化修饰的酪氨酸-32替换为苯丙氨酸的突变体在ET和生物膜形成方面的能力有所降低。结果表明,甘油磷酸化修饰的酪氨酸对于电极呼吸或Fe(III)呼吸细菌中的表面附着和电子转移很重要。