Suppr超能文献

嗜硫还原地杆菌PilA蛋白的翻译后修饰在表面附着、生物膜形成及在不溶性细胞外电子受体上生长中的意义

Significance of a Posttranslational Modification of the PilA Protein of Geobacter sulfurreducens for Surface Attachment, Biofilm Formation, and Growth on Insoluble Extracellular Electron Acceptors.

作者信息

Richter Lubna V, Franks Ashley E, Weis Robert M, Sandler Steven J

机构信息

Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts, USA

Department of Microbiology, University of Massachusetts at Amherst, Amherst, Massachusetts, USA.

出版信息

J Bacteriol. 2017 Mar 28;199(8). doi: 10.1128/JB.00716-16. Print 2017 Apr 15.

Abstract

, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of -type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of to specific surfaces. Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in is still a subject of research. In this study, we identified a posttranslational modification of the major type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring cells.

摘要

一种厌氧金属还原细菌拥有IV型菌毛。这些菌毛是生物膜形成过程中的内在结构元件,并且与多种细胞色素一起,被认为可作为导电纳米线,实现向金属氧化物和石墨阳极的长距离电子转移(ET)。在此,我们报告称,IV型菌毛的结构亚基PilA蛋白内一个非保守氨基酸残基的翻译后修饰,对于在不溶性细胞外电子受体上生长至关重要。对分泌的PilA蛋白进行基质辅助激光解吸电离(MALDI)质谱分析,发现酪氨酸-32发生了翻译后修饰,修饰部分的质量与甘油磷酸基团一致。将该酪氨酸突变为苯丙氨酸会抑制以Fe(III)氧化物作为唯一电子受体时的细胞生长。此外,这种氨基酸取代严重减少了在石墨表面的生物膜形成,并损害了微生物燃料电池中的电流输出。这些结果表明,附着于不溶性电子受体的能力对于细胞利用它们的能力起着关键作用。这项工作表明,Y32的甘油磷酸化修饰是导致IV型菌毛表面电荷的关键因素,影响了该细菌对特定表面的粘附。IV型菌毛是细菌的附属结构,在细胞粘附、毒力、颤动运动以及从细菌细胞到不溶性细胞外电子受体的长距离电子转移(ET)中发挥作用。IV型菌毛在该细菌中进行ET的机制和作用仍是一个研究课题。在本研究中,我们鉴定出主要IV型菌毛蛋白的一种翻译后修饰,推测为甘油磷酸部分。我们表明,与野生型相比,将甘油磷酸化修饰的酪氨酸-32替换为苯丙氨酸的突变体在ET和生物膜形成方面的能力有所降低。结果表明,甘油磷酸化修饰的酪氨酸对于电极呼吸或Fe(III)呼吸细菌中的表面附着和电子转移很重要。

相似文献

6
Significance of a minor pilin PilV in biofilm cohesion of Geobacter sulfurreducens.
Sci Total Environ. 2024 Jun 1;927:172242. doi: 10.1016/j.scitotenv.2024.172242. Epub 2024 Apr 4.
7
Direct Observation of Electrically Conductive Pili Emanating from .
mBio. 2021 Aug 31;12(4):e0220921. doi: 10.1128/mBio.02209-21.
9
Going wireless: Fe(III) oxide reduction without pili by Geobacter sulfurreducens strain JS-1.
Appl Environ Microbiol. 2014 Jul;80(14):4331-40. doi: 10.1128/AEM.01122-14. Epub 2014 May 9.
10
Cytochrome OmcS Is Not Essential for Extracellular Electron Transport via Conductive Pili in Geobacter sulfurreducens Strain KN400.
Appl Environ Microbiol. 2022 Jan 11;88(1):e0162221. doi: 10.1128/AEM.01622-21. Epub 2021 Oct 20.

引用本文的文献

1
Bacteriophage-mediated approaches for biofilm control.
Front Cell Infect Microbiol. 2024 Oct 7;14:1428637. doi: 10.3389/fcimb.2024.1428637. eCollection 2024.
3
Biochemical characterization and mercury methylation capacity of biofilms grown in media containing iron hydroxide or fumarate.
Biofilm. 2023 Jul 29;6:100144. doi: 10.1016/j.bioflm.2023.100144. eCollection 2023 Dec 15.
4
Methylmercury formation in biofilms of .
Front Microbiol. 2023 Jan 13;14:1079000. doi: 10.3389/fmicb.2023.1079000. eCollection 2023.
5
Structure of Geobacter pili reveals secretory rather than nanowire behaviour.
Nature. 2021 Sep;597(7876):430-434. doi: 10.1038/s41586-021-03857-w. Epub 2021 Sep 1.
6
Enhanced Growth of Pilin-Deficient Geobacter sulfurreducens Mutants in Carbon Poor and Electron Donor Limiting Conditions.
Microb Ecol. 2019 Oct;78(3):618-630. doi: 10.1007/s00248-019-01316-8. Epub 2019 Feb 13.
8
Harnessing the power of microbial nanowires.
Microb Biotechnol. 2018 Nov;11(6):979-994. doi: 10.1111/1751-7915.13280. Epub 2018 May 27.
9
The Functional Mechanisms and Application of Electron Shuttles in Extracellular Electron Transfer.
Curr Microbiol. 2018 Jan;75(1):99-106. doi: 10.1007/s00284-017-1386-8. Epub 2017 Nov 10.

本文引用的文献

2
Sensational biofilms: surface sensing in bacteria.
Curr Opin Microbiol. 2016 Apr;30:139-146. doi: 10.1016/j.mib.2016.02.004. Epub 2016 Mar 8.
3
Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations.
Phys Chem Chem Phys. 2015 Sep 14;17(34):22217-26. doi: 10.1039/c5cp03432a. Epub 2015 Aug 5.
4
Going wireless: Fe(III) oxide reduction without pili by Geobacter sulfurreducens strain JS-1.
Appl Environ Microbiol. 2014 Jul;80(14):4331-40. doi: 10.1128/AEM.01122-14. Epub 2014 May 9.
5
Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens.
J Biol Chem. 2013 Oct 11;288(41):29260-6. doi: 10.1074/jbc.M113.498527. Epub 2013 Aug 21.
6
Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens.
Environ Microbiol Rep. 2011 Apr;3(2):211-7. doi: 10.1111/j.1758-2229.2010.00210.x. Epub 2010 Aug 26.
8
Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms.
Phys Chem Chem Phys. 2013 Jul 7;15(25):10300-6. doi: 10.1039/c3cp50411e. Epub 2013 May 22.
10
Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens.
Microbiology (Reading). 2013 Mar;159(Pt 3):515-535. doi: 10.1099/mic.0.064089-0. Epub 2013 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验