Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech) , Pasadena, California 91125, United States.
J Am Chem Soc. 2017 Mar 1;139(8):3161-3170. doi: 10.1021/jacs.6b12861. Epub 2017 Feb 17.
Fe-mediated biological nitrogen fixation is thought to proceed via either a sequence of proton and electron transfer steps, concerted H atom transfer steps, or some combination thereof. Regardless of the specifics and whether the intimate mechanism for N-to-NH conversion involves a distal pathway, an alternating pathway, or some hybrid of these limiting scenarios, Fe-NH intermediates are implicated that feature reactive N-H bonds. Thermodynamic knowledge of the N-H bond strengths of such species is scant, and is especially difficult to obtain for the most reactive early stage candidate intermediates (e.g., Fe-N═NH, Fe═N-NH, Fe-NH═NH). Such knowledge is essential to considering various mechanistic hypotheses for biological (and synthetic) nitrogen fixation and to the rational design of improved synthetic N fixation catalysts. We recently reported several reactive complexes derived from the direct protonation of Fe-N and Fe-CN species at the terminal N atom (e.g., Fe═N-NH, Fe-C≡NH, Fe≡C-NH). These same Fe-N and Fe-CN systems are functionally active for N-to-NH and CN-to-CH/NH conversion, respectively, when subjected to protons and electrons, and hence provide an excellent opportunity for obtaining meaningful N-H bond strength data. We report here a combined synthetic, structural, and spectroscopic/analytic study to estimate the N-H bond strengths of several species of interest. We assess the reactivity profiles of species featuring reactive N-H bonds and estimate their homolytic N-H bond enthalpies (BDE) via redox and acidity titrations. Very low N-H bond dissociation enthalpies, ranging from 65 (Fe-C≡NH) to ≤37 kcal/mol (Fe-N═NH), are determined. The collective data presented herein provide insight into the facile reactivity profiles of early stage protonated Fe-N and Fe-CN species.
亚铁介导的生物固氮被认为是通过质子和电子转移步骤的序列、协同 H 原子转移步骤或它们的某种组合进行的。无论具体细节如何,以及 N 到 NH 转化的紧密机制是否涉及远端途径、交替途径还是这些限制情况的某种混合,都涉及到具有反应性 N-H 键的 Fe-NH 中间体。这些物种的 N-H 键强度的热力学知识很少,对于最具反应性的早期候选中间体(例如,Fe-N═NH、Fe═N-NH、Fe-NH═NH)尤其难以获得。这种知识对于考虑生物(和合成)固氮的各种机理假设以及合理设计改进的合成固氮催化剂至关重要。我们最近报道了几种由末端 N 原子上的 Fe-N 和 Fe-CN 物种的直接质子化衍生而来的反应性配合物(例如,Fe═N-NH、Fe-C≡NH、Fe≡C-NH)。当这些相同的 Fe-N 和 Fe-CN 系统受到质子和电子时,它们分别对 N 到 NH 和 CN 到 CH/NH 转化具有功能活性,因此为获得有意义的 N-H 键强度数据提供了极好的机会。我们在这里报告了一项综合的合成、结构和光谱/分析研究,以估计几种感兴趣的物种的 N-H 键强度。我们评估了具有反应性 N-H 键的物种的反应性轮廓,并通过氧化还原和酸度滴定来估计它们的均裂 N-H 键焓(BDE)。确定了非常低的 N-H 键离解焓,范围从 65(Fe-C≡NH)到≤37 kcal/mol(Fe-N═NH)。本文提出的综合数据提供了对早期质子化 Fe-N 和 Fe-CN 物种的易反应性轮廓的深入了解。