Suppr超能文献

使用IsoMut对多个同基因样本的全基因组序列进行快速准确的突变检测。

Fast and accurate mutation detection in whole genome sequences of multiple isogenic samples with IsoMut.

作者信息

Pipek O, Ribli D, Molnár J, Póti Á, Krzystanek M, Bodor A, Tusnády G E, Szallasi Z, Csabai I, Szüts D

机构信息

Department of Physics of Complex Systems, Eötvös Loránd University, H-1117, Budapest, Hungary.

Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117, Budapest, Hungary.

出版信息

BMC Bioinformatics. 2017 Jan 31;18(1):73. doi: 10.1186/s12859-017-1492-4.

Abstract

BACKGROUND

Detection of somatic mutations is one of the main goals of next generation DNA sequencing. A wide range of experimental systems are available for the study of spontaneous or environmentally induced mutagenic processes. However, most of the routinely used mutation calling algorithms are not optimised for the simultaneous analysis of multiple samples, or for non-human experimental model systems with no reliable databases of common genetic variations. Most standard tools either require numerous in-house post filtering steps with scarce documentation or take an unpractically long time to run. To overcome these problems, we designed the streamlined IsoMut tool which can be readily adapted to experimental scenarios where the goal is the identification of experimentally induced mutations in multiple isogenic samples.

METHODS

Using 30 isogenic samples, reliable cohorts of validated mutations were created for testing purposes. Optimal values of the filtering parameters of IsoMut were determined in a thorough and strict optimization procedure based on these test sets.

RESULTS

We show that IsoMut, when tuned correctly, decreases the false positive rate compared to conventional tools in a 30 sample experimental setup; and detects not only single nucleotide variations, but short insertions and deletions as well. IsoMut can also be run more than a hundred times faster than the most precise state of art tool, due its straightforward and easily understandable filtering algorithm.

CONCLUSIONS

IsoMut has already been successfully applied in multiple recent studies to find unique, treatment induced mutations in sets of isogenic samples with very low false positive rates. These types of studies provide an important contribution to determining the mutagenic effect of environmental agents or genetic defects, and IsoMut turned out to be an invaluable tool in the analysis of such data.

摘要

背景

体细胞突变检测是下一代DNA测序的主要目标之一。有多种实验系统可用于研究自发或环境诱导的诱变过程。然而,大多数常规使用的突变检测算法并未针对多个样本的同时分析进行优化,也未针对没有可靠常见遗传变异数据库的非人类实验模型系统进行优化。大多数标准工具要么需要大量内部后过滤步骤且文档稀少,要么运行时间长得不切实际。为克服这些问题,我们设计了简化的IsoMut工具,它可轻松适应旨在识别多个同基因样本中实验诱导突变的实验场景。

方法

使用30个同基因样本创建了可靠的验证突变队列用于测试目的。基于这些测试集,通过全面且严格的优化程序确定了IsoMut过滤参数的最佳值。

结果

我们表明,在30个样本的实验设置中,IsoMut经过正确调整后,与传统工具相比可降低假阳性率;并且不仅能检测单核苷酸变异,还能检测短插入和缺失。由于其简单易懂的过滤算法,IsoMut的运行速度也比最精确的现有工具快一百多倍。

结论

IsoMut已在多项近期研究中成功应用,以在同基因样本集中发现独特的、治疗诱导的突变,且假阳性率非常低。这类研究对确定环境因素或遗传缺陷的诱变作用做出了重要贡献,而IsoMut在分析此类数据时被证明是一个非常有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/5282906/973c6bd5b97f/12859_2017_1492_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验